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Abstract: Remote sensing is an important mechanism for monitoring and oversight the environment, natural resources, and human 

activities. In this research, the focus was on utilizing deep learning (DL) algorithms, specifically a Convolutional Neural Network 

(CNNs) model with a U-Net architecture, for the classification of satellite image and because of there are multiple and extensive 

research contributions to the study of traditional artificial intelligence approaches in the field of remote sensing, this study was 

limited to a comprehensive review of some previous studies in this field. As for DL, a U-Net model was developed, utilized and it 

was trained on Sentinel-2 satellite image have a spatial resolution of 10 meters. The training stage was centered on data covering the 

Egypt especially the Delta region and the Nile Valley due to their agricultural and environmental importance. The model achieved a 

classification and segmentation accuracy of 94.14% and an Jaccard coefficient (IOU) value of 87.64%. These results confirm the 

strong potential of DL models, such as U-Net that resulted high accuracy in satellite image classification and segmentation tasks, 

especially when used specific geographical regions with distinctive characteristics. 
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1. Introduction 

The way we can see and understand what's happening on 

Earth from far away keeps getting better.  There's been big 

improvements lately in using satellites and other remote 

Sensing techniques to keep track of nature, the environment, 

and what we humans are doing and the amount and types of 

satellite data have just exploded. So, we've really needed to 

come up with smarter ways to dig through it all to pull out 

the right info quickly. DL has been getting lots of attention 

because it’s so good at finding patterns, even complicated 

ones in massive piles of data.  These techniques totally blow 

away the old ways of analyzing satellite images.  DL has 

kicked butt at picking out objects and labeling different parts 

of images.  When it comes to making sense of remote 

sensing data, deep learning seems to really have a lot going 

for it.  It's shown it can be extremely useful for types of tasks 

like identifying image classification, object detection, image 

Segmentation and Change detection. Khelifi and Mignotte 

[1]; Zhu et al. [2]; Dritsas and Trigka [3] 

Land Use and Land Cover Change (LU/LC) is going 

through swift transformations on account of study of human 

population, superior to highly different countryside’s, 

especially between urban and rural environments. This vital 

character demands studies across various dimensional and 

worldly scales. The study evaluates the accomplishment of 

machine learning algorithms in classifying multi-

determination satellite images for LU/LC discovery. Three 

classification methods Random Forest (RF), Support Vector 

Machine (SVM), and their shapely combination were tested 

following harsh preprocessing. Results confirmed that SVM 

obtained accuracy above 0.96, stressing the importance of 

selecting proper algorithms for monitoring land changes in 

quickly growing atmospheres. Rahman et al. [4] 

In a study focused on classification in Beijing using 

Sentinel-2 satellite image established classifiers like SVM 

and default RF worked out categorization veracity levels of 

47.1% and 79%, individually, when using RGB bands. 

Zhang and others. [5] Traditional AI algorithms like SVM, 

Decision Trees, and K-Means are productive for classifying 

Sentinel-2 satellite image, that offers extreme-resolution 

dossier for land cover tasks. These forms label features like 

houses, roads, and water bodies accompanying extreme 

veracity. Unsupervised methods like ISODATA to act well 

when refined to handle assorted pixels. Abburu and Golla. 

[6] The study presents a hybrid ensemble method for joining 

ANN, SVM, and Classification Trees, enhancing 

classification accuracy to 95.6% for constructions, roads, 

and plants. The approach outperforms individual classifiers 

and standard FMV while asserting computational 

effectiveness. Salah [7]. Artificial neural networks (ANN) 

are established in remote sensing for LU/LC categorization, 

upholding requests like urban preparation. While ANN 

offers strong pattern acknowledgment, added arrangements 

like SVM, fuzzy logic, and genetic algorithms each have 

singular substances and restraints inaccuracy, 

interpretability, and computational effectiveness. Abaidoo et 

al. [8] 

DL algorithms have given better performance in satellite 

image classification, especially accompanying the chance of 

high- resolution imagery from platforms like Sentinel-2A 

and Sentinel-2B. These satellites supply 13 multispectral 

bands at variable spatial resolutions (10 m, 20 m, and 60 m), 

contribution rich spectral and geographical information 
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important for preparation deep neural networks. In 

particular, CNNs have demonstrated strong performance in 

learning hierarchical geographic and spectral features from 

satellite imagery without the need for manual feature 

extraction. In contrast to traditional methods, DL methods 

have the ability to independently acquire meaningful features 

directly from raw pixel data. Drusch et al. [9]; Kussul et al. 

[10]; Ienco et al. [11]; Zhang and Roy [12]; Ayush et al. [13] 

Studies employing Sentinel-2 imagery have displayed 

that DL models outperform classical classifiers Special 

scenarios, specifically when abundant, labeled datasets are 

convenient. For example, CNN based on U-Net located 

models applied to city land cover categorization have 

achieved overall accuracies surpassing 98% when prepared 

with Full-bandwidth Sentinel-2 data, significantly lowering 

misclassification in complex districts such as class confines. 

These models more exhibit greater strength to spectral 

contrast and are Suitable for capture both worldwide 

framework and fine-grained analyses inside the imagery. Ma 

et al. [14]; Zhang et al. [15]  

U-Net is a type of CNNs design developed specifically 

designed for semantic segmentation, and it was originally 

tailored for use in biomedical concept treatment applications. 

Ronneberger et al. [16]. U-Net has because gained extensive 

ratification in various fields, containing Remote sensing and 

segmentation of satellite images due to its ability to produce 

exact, pixel predictions Khan et al.[17] The construction 

trails a symmetric encoder-interpreter makeup: the 

contracting course captures circumstances through 

successive loop and pooling movements the broad pathway 

expedites exact localization by employing up sampling 

movements and merging high-determination dimensional 

details from the encoder through skip connections. 

Ronneberger et al[16]. 

One of the key strengths of U-Net is its ability to do well 

with relatively limited training datasets, making it ideal for 

remote sensing uses where annotated data may be limited. In 

satellite image classification, U-Net is particularly direct at 

extracting detailed looks to a degree roads, buildings, and 

water bodies, even in complex city surroundings. Its end-to-

end architecture enables it to learn both reduced-level and 

high-ranking features, happening in extreme classification 

veracity across diversified LC classes. As a result, U-Net has 

become a standard structure for DL-based segmentation of 

high-resolution remote sensing image. Zhang et al. [18]; Li 

et al. [19] 

DL has emerged as a transformative solution, as 

demonstrated by the evaluation of seven architectures 

(SegNet, PSPNet, UNet, UNet++, DepLabV3+, SegFormer, 

and SegViT) on the ISPRS Potsdam dataset. The results 

show that SegViT achieves superior accuracy (85.2% of the 

unit of measure) and preserves edges but requires more 

computational resources highlighting the need to choose a 

task-specific model that balances accuracy and efficiency. 

Jiang.[19] 

2.  STUDY AREA AND DATA SOURCE  

 The study area includes sections of the  Delta of the  

Nile and Valley regions in Egypt.A total of 8 Sentinel-2 tiles 

were downloaded using the Google Earth Engine Python 

API. Each tile covers an area of 110 × 110 km², its area is 

about 10,000 km² per tile, with imagery provided at a 10-

meter spatial resolution. The total area covered by the tiles is 

80,000 km² these tiles were selected to capture a 

representative variety of land cover types, including dense 

agricultural zones, expanding urban areas, and Water bodies. 

The dataset provides a rich foundation for analyzing spectral 

variability and detecting seasonal changes in this 

ecologically and economically vital region each tile 

corresponds to a 11,000 × 11,000-pixel image, The dataset 

comprises approximately 800 million pixels distributed 

across eight image tiles. In the north, irrigation networks 

dominate, while the central areas include mixed croplands 

and the southern part shows increasing aridity. Hammam et 

al. [20]. The satellite images gathered from 2017 to 2022 

were processed to correct for atmospheric interference and to 

standardize their radiometric values. Following this 

preprocessing, the data was split into three subsets: 70% for 

model training, 15% for validation purposes, and the 

remaining 15% for final testing, facilitating both 

classification and segmentation analyses. Goodfellow et al. 

[21] 

Sentinel-2 is a dual-satellite Earth observation mission 

developed by the European Space Agency (ESA) under the 

Copernicus Programmer. It supplies multispectral data 

across 13 primary bands covering the visible, near-infrared, 

and shortwave infrared spectral regions. Each Sentinel-2 

satellite has a swath width of 290 kilometers, allowing for 

broad-area coverage in a single pass. Moreover, the 

constellation’s five-day revisit interval enhances its capacity 

to monitor dynamic environmental and agricultural changes 

over time. Drusch et al. [9]. 
 

TABLE 1   Attribute and its specification of specification of Study area 

 

Attribute Specification 

Region Nile Delta & Valley, Egypt 

Tile Count 8 

Single Tile Coverage 110 × 110 km² ≈ (10,000 km²) 

Total Area 80,000 km² 

Image Dimensions 11,000 × 11,000 pixels 

Aggregate Pixels 800 million 

Resolution 10m (MSI) 

Temporal Coverage 201>–2029 

Processing Level L2A (Bottom-of-Atmosphere) 

 

The satellite imagery used in this study was obtained 

from Sentinel-2 Level-2A (L2A) products, which provide 

Bottom-of-Atmosphere (BOA) reflectance values, ensuring 

consistency in radiometric and atmospheric conditions. 

Specifically, Bands 2 (Blue), 3 (Green), and 4 (Red) each 

with a 10-meter spatial resolution were individually 

downloaded using the Google Earth Engine Python API and 

later composited into true-color RGB images via Python 

scripting. These bands correspond to central wavelengths of 

approximately 496.6 nm (B2), 560 nm (B3), and 664.5 nm 
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(B4), offering high fidelity in capturing surface features and 

land cover patterns. All images were exported in 

GeoTIFF(.tif) format, which preserves geospatial metadata 

and ensures compatibility with remote sensing and GIS 

software for subsequent analysis. The Sentinel-2 Level-2A 

surface reflectance data, provided through Google Earth 

Engine, offers harmonized imagery suitable for land cover 

classification and change detection (Google Earth Engine, 

n.d.). [22] 

3. METHODOLOGY  

A general overview of the proposed methodology is 

illustrated in Figure 3. This framework summarizes the 

sequential stages starting from Sentinel-2 image acquisition, 

preprocessing steps, dataset annotation, model development 

and evaluation. Each of these phases is elaborated upon in 

the following subsections. 

 

 
(a)                                                                                                   (b) 

FIGURE 1 A general view of the study area from (a) Sentinel-2 and (b) OpenStreetMap, respectively. And it includes a tile divided into 9 images. 

 

 
FIGURE 2 A sample of the uploaded images, bands 2, 3, and 4 in order, and lastly the color composite image. 

 

 
FIGURE 3 Methodology for Satellite Image Segmentation 

 

3.1 Data collection and preparation: 

 The dataset was composed and pre-processed using 

Python scripts performed within a Jupyter Notebook 

environment. Specifically, Sentinel-2 Level-2A imagery was 

achieve via the Google Earth Engine Python API  and  were 

filtered using cloud masks (based on the QA60 band) In 

addition, atmospheric corrections were applied through the 

built-in functions  where Bands 2 (Blue), 3 (Green), and 4 

(Red) were separately downloaded each tile. These bands 

were therefore composited into RGB (natural color) images 

utilizing Python, accompanying each Sentinel-2 tile 

processed individually to maintain spatial integrity. 

Successive the image preparation, these images were 

imported inside the image-annotator Tool up to manually 

annotate preparation masks, enabling the creation of marked 

datasets for supervised learning. That workflow ensured 

effective data treatment and correct annotation, facilitating 

the incident and preparation of the DL- CNN (U-Net) 

located model. 
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FIGURE 4 Sampling of the satellite images (a) for the study area accompanying Original masked image (b) 

 

3.2 Model development and evaluation: 

To do acceptable segmentation of Sentinel-2 satellite 

imagery, a CNNs based on the U-Net architecture was 

achieved. The preprocessed RGB images and their matching 

manually described masks were divide into training (70%), 

validation (15%), and test (15%) sets. To upgrade model 

generalization and strength, data augmentation methods 

containing flipping, turn, and shine adjustment were 

handled. This model was trained using a explicit cross-

entropy loss function in addition to the Adam optimization 

algorithm. To improve generalization in addition avoid 

overfitting, early stopping in addition dynamic learning rate 

adjustments were included during the training phase. 

Goodfellow et al. [21] 

3.2.1 CNNs and U-Net Architecture for Satellite 

Image Analysis 

U-Net is a form of Convolutional Neural Network (CNN) 

that is optimized for image segmentation. Yele.et al. [24] 

Convolutional Neural Networks (CNNs) are effective class 

of deep learning models established in computer vision 

projects due to their skill to automatically extract spatial 

features from images. Upadhyay et al. [25].  In remote 

sensing, CNNs play an important role in defining satellite 

imagery, contribution high accuracy in classification, object 

detection, and segmentation tasks. He et al. [26].  Among 

differing CNN-located models, the U-Net architecture is 

prominent all at once of the most active for semantic 

segmentation. Basically, developed for biomedical image, U-

Net has been favorably used to remote sensing on account of 

its encoder–decoder construction and skip connections that 

maintain spatial analyses Ronneberger et al. [16]. 

3.2.2 Parameters and Hyperparameters in Deep 

Learning Models: 

In DL models, parameters relate to the values 

automatically learned during training, for example 

convolutional layer weights and biases that are updated 

During   backpropagation process .Goodfellow et al. (2016). 

In contrast, hyperparameters are user-defined configurations 

set superior to training that rule the learning process itself, 

containing the learning rate, batch size, and dropout rate. In 

this study, hyperparameters were orderly optimized as 

itemized in Table 2, shared methods like fixed random 

seeding and input normalization (Min Max Scaler) to 

establish reproducibility. Notably, absolute hyperparameters 

(such as, the number of convolutional filters) are design-

dependent, while possible choice (like, the loss function) 

generally management the optimization process 

 

 
FIGURE 5 U-Net architecture adapted for semantic segmentation of Sentinel-2 satellite imagery, including encoder, decoder, skip connections, and output 

layer. Ronneberger et al. [16]. 
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Figure 6. Workflow of the U-Net-Based Semantic Segmentation Process 

 
TABLE2   Hyperparameter of the model 

 

Hyperparameter Value/Range 

Image Patch Size 256×256 

Image Channels 3 (RGB) 

Train Size 70% 

Validation Size 15% 

Test Size 15% 

Random State 100 

Batch Size 16 

Optimizer Adam (β₁=0.9, β₂=0.999) 

Learning Rate 0.001 

Loss Function Categorical Cross-Entropy 

Number of Classes 6 

Activation Softmax 

 

3.2.3 Comprehensive Evaluation of the Satellite Image 

Segmentation Model: 

The performance of the DL model for satellite image 

segmentation was evaluated using standard metrics, 

including Precision, Recall, F1-score, Accuracy, and Jaccard 

coefficient that named in AI Intersection over Union (IoU). 

Minaee et al. [27]  

The model was trained and tested using   Google Colab 

Pro with a Tesla T4 GPU, achieving efficient resource 

utilization: 53.3% of system RAM, 60.0% of GPU RAM, 

and 14.6% of disk space. The overall Precision was 87.13%, 

reflecting the proportion of correct positive predictions 

among all predicted positives. The model achieved a recall 

score of 85.36%, indicating its effectiveness in detecting true 

positive instances within the dataset. The F1-score, which 

balances precision and recall, was 86.64%, and the IoU 

achieved 87.64%, indicating strong agreement between 

predicted and ground truth masks. The total accuracy was 

94.14%. The metric evaluates the spatial agreement between 

the predicted segmentation output and the ground truth (GT) 

mask, reflecting the proportion of their intersection relative 

to their union. It serves as an indicator of the model’s 

effectiveness in accurately delineating target regions the 

following equations were used to calculate the metrics. 

 

Accuracy =    
           

                   
                                eq (1)  

Precision =  
     

          
                                                eq (2) 

Recall     =   
     

          
                                                     eq (3) 

F1-score = 2 × 
                     

                    
                             eq (4) 

IoU    = 
  

               
                                                eq (5) 

Here, TP indicates correctly identified positive cases, FP 

refers to incorrectly classified negatives, and FN represents 

missed positive instances. The evaluation results confirmed 

strong classification accuracy across most categories, with 

Water Boundaries (F1-score: 94.04 %) and Vegetation 

region (F1-score: 96.18%) achieving particularly high 

scores. In contrast, Road detection yielded a comparatively 

lower F1-score (60.00%), indicating potential room for 

improvement through model refinement for this specific 

class. 

 
FIGURE 4 Computer Resources Used 
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FIGURE 5 A sample of the results during the test phase 

 

4. RESULTS ANALYSIS AND 

INTERPRETATION 

4.1 CNN U-Net Model Performance: 

 CNNs established the U-Net architecture was grown and 

trained for the semantic segmentation (Classification) of 

satellite images. The model was evaluated utilizing several 

performance metrics containing overall accuracy, precision, 

recall, F1-score, and (IoU). The model reached an overall 

accuracy of 94.14%, signifying its powerful capability 

wrongly classifying the majority of pixels in the test dataset 

the class-wise appearance showed variation between the land 

cover types. The vegetation area class obtained the best 

classification accuracy of 97.18%, followed by water bodies 

accompanying 93.07%, and bare ground accompanying 

95.01%. The built-up area class is well classified, with an 

accuracy of 81.41%. The model explained strong overall 

performance accompanying forceful test scores: 94.14% 

accuracy, 85.63% recall, an 86.64 F1-score, and 87.13% 

IoU. However, the road class demonstrated significantly 

lower accuracy at just 65.03%. This underperformance is 

probably attributable to two key challenges: the class's 

small-minded linear features and its spectral characteristics 

that approximately resemble adjacent sides in the imagery. 

These results express the model's powerful and balanced 

ability to discover and correctly segment the various land 

cover classes, making it suitable for high-accuracy remote 

sensing applications. 

4.2 Class- wise Accuracy Analysis: 

The class-wise accuracy study determines a detailed 

understanding of how efficiently the CNN U-Net model 

classified each land cover class. This evaluation helps 

identify that classes the model performed right on in addition 

that one’s may require further cultivation. Generally, classes 

accompanying distinct spatial or spectral features likely to 

yield higher classification accuracies, even though more 

complex or visually similar groups pose greater challenges. 

A comprehensive concise of the analysis accuracy each class 

is presented in the table 4, offering a more transparent view 

of the model’s depiction across distinct land cover types. If 

we focus on the results, we will notice a difference between 

the overall accuracy and the rest of the criteria. this 

difference is a result of class imbalance such as bare ground, 

vegetation and water bodies dominate the dataset leading to 

higher accuracy while underrepresented classes like roads 

and unlabeled suffer from reduced precision and recall due 

to their limited spatial extent and spectral similarity with 

adjacent features and this will also be reflected in the overall 

criteria. 

 Confusion Matrix a table used to evaluate the 

performance of a classification model.to further evaluate the 

classification performance of the U-Net model, a confusion 

matrix was generated. This matrix provides a detailed 

breakdown of the correctly and incorrectly classified pixels 

across all land cover classes. It highlights class-wise 

prediction accuracy and helps identify where the model 

tends to misclassify certain classes, such as roads and 

unlabeled areas.  

TABLE 3   Overall Evaluation 

 

Hyperparameter Value/Range 

Metric Value 

Accuracy 94.14% 

Precision 87.13% 

Recall 85.63% 

F1-Score 86.64% 

IoU 87.13% 
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TABLE 4   Class-wise Evaluation 

 

Class Accuracy precision Recall F1-Score 

Built-up Areas 86.14 % ?=.=< % ?8.48 % 8:.@< % 

Water bodies 9:.0> % 9<.8; % 9:.7> % 9;.7@ %  

Vegetation Areas 9>.18 % 9<.24 % 9>.18 % 9=.97 % 

Bare Ground  9<.01 % 94.=4 % 9<.01 % 94.?: % 

Roads <<.9? % =<.<= % <<.9? % <@.@9 % 

Unlabeled ;@.65 % <@.87 % ;@.65 % <:.@> % 

 

 
Table 5. Confusion matrix showing the classification performance of the U-Net model across all land cover classes. Diagonal values represent correctly 

classified pixels, while off-diagonal values indicate misclassifications. 

 

True \ Pred Bare Ground Water Bodies Roads Vegetation Built-up Unlabeled 

Bare Ground 168,858,194 1,598,932 126,836 1,762,015 1,991,802 14,677 

Water Bodies 3,909,055 74,933,249 59,621 648,118 157,265 119,632 

Roads 205,139 57,815 977,065 322,507 250,490 4,116 

Vegetation 815,714 791,568 223,668 65,271,102 729,050 24,544 

Built-up 3,213,266 83,765 133,646 2,184,249 21,746,478 2,959 

Unlabeled 81,398 381,500 18,377 116,420 29,003 1,068,125 

 

 

 
FIGURE 6. Training and Validation metrics for semantic segmentation for satellite image 
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FIGURE 7. The predicted images representing 15% [Test the dataset] 

 

The CNN U-Net model demonstrated remarkable 

performance, as represented in Figure (7), where it in spite 

outperformed the Ground Truth in certain areas, particularly 

in water bodies. This reflects its high accuracy in predicting 

water boundaries. The model also illustrated notable 

capability in identifying built-up regions, verifying its 

performance in this class. However, the model failed in some 

specific water boundaries, indicating challenges in 

accurately distinctive this class under certain conditions. 

Additionally, the model illustrated poor performance in 

detecting roads, which aligns with the quantitative results 

indicating low accuracy for this class likely Because of the 

narrow structure of roads and their spectral likeness to 

surrounding surfaces. 

The CNN U-Net model was also used to satellite images 

inadequate Ground Truth data, so that evaluate its 

generalization capability. The model presented a high degree 

of accuracy in classifying Vegetation region and built-up 

areas, capturing the spatial patterns in addition to borders 

accompanying powerful clarity. Additionally, bare ground 

regions were well-identified, with minimum confusion with 

different classes in spite of these strengths, the model 

exhibited few disadvantages in classifying road segments, 

specifically due to their narrow and lengthened shapes, that 

often resemble neighboring classes in spectral 

characteristics. However, individual notable progress was 

the detection of a small-sized built-up area, that highlights 

the model’s sensitivity in addition skill to capture even 

minor spatial features. That promises the model can be a 

good tool LC segmentation, even in the absence of classified 

data that highlights the model’s sensitivity and capability to 

capture even small spatial features. This advises the model 

maybe a reliable tool for LC segmentation, in spite of the 

absence of labeled data.  

5. Discussion: 

This study is based on previous research and illustrates 

the significant potential of deep learning algorithms 

particularly the U-Net architecture in remote sensing image 

classification and segmentation. This section interprets our 

results, discusses current limitations, and shows potential 

directions for future research. 

5.1 Model Performance and Comparative Insights: 

The U-Net model applied in this research gained a 

classification and segmentation accuracy of 94.14% in 

distinctive LC classes from satellite imagery. This result is 

consistent with existing research showing U-Net’s success in 

pixel-level image classification and segmentation due to the 

encoder and decoder structure including skip connections of 

U-Net Keep spatial information through training, enabling 

more precise boundary mapping.  

Versus to traditional artificial intelligence approaches 

such as SVM and RF and deep learning models especially 

the U-Nets provides an important benefit by automatically 

learning hierarchical and designed for a specific task feature 

from raw data, eliminating the need for manual feature 

engineering and enhancing model performance in complex 

remote sensing tasks and this is consistent with the results 

presented in the review phase this is consistent with the 

results presented in the review phase of the researches. Zhu 

et al. [2] , Rahman et al. [4] and Zhang et al. [5] and Abburu 

and Golla. [6] and Salah [7] Abaidoo et al. [8]. The results 

were consistent with previous results in U-Net. Ma et al. 

[14]; Zhang et al. [15] 
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FIGURE 8. segmentation of Sentinel-2 satellite image having a spatial resolution of 10 meters 

 

5.2 Balancing Accuracy and Computational Efficiency: 

Computational Efficiency: U-Net provide an acceptable 

balance between accuracy and computational cost, which 

makes it more applicable than more recent architectures like 

SegVit or other transformer-based models, that could lead to 

higher accuracy in multi-class classification but require 

meaningfully more resources. 

Image Resolution: The model achieves good 

performance using medium-resolution Sentinel-2 imagery, 

showing its ability to detect varying data quality. Although, 

Performance is expected to improve with use very high-

resolution (VHR) data. Tong et al [28] 

5.3 Limitations: 

Geographic Bias: The model was trained on data from 

Egypt’s Delta and valley region, which may reduce its 

generalization ability to other geographic areas with different 

environmental conditions unless retrained or improved by 

training on varied data. 

Mask Quality Dependency: The accuracy of the model 

depends on masks designed manually using Image 

Annotator software. If the masks are not designed well, this 

will give completely opposite results. 

6. CONCLUSION 

This research highlighted the capability of a U-Net–based 

CNNs for performing classification and segmentation a on 

Sentinel-2 satellite data. The model obtains high overall 

accuracy (94.14%) and performed well across most LC 

classes, particularly agricultural regions and water 

boundaries. These results affirm the suitability of U-Net for 

remote sensing tasks, especially when working with 

medium-resolution optical data despite its strong 

performance, the model showed limitations in accurately 

classifying narrow and spectrally ambiguous features such as 

roads. This highlights the potential benefit of incorporating 

additional data sources, such as SAR imagery, or enhancing 

the model architecture with attention mechanisms or multi-

scale learning overall, the proposed approach offers a 

reliable and scalable solution for land cover mapping, with 

practical implications for sustainable urban planning, water 

resource monitoring, and environmental management. 

Future work should focus on improving generalizability 

across diverse geographic regions and addressing class 

imbalance through data augmentation or customized loss 

functions. 

6.1 Future Research Directions: 

Hybrid Architectures: Performance could be enhanced by 

integrating U-Net with attention mechanisms or transformer-

based components to capture both local and global features. 

Edge Deployment Optimization: Techniques like pruning 

and quantization could be used to reduce model size and 

memory usage, facilitating deployment on low-resource 

platforms such as UAVs for flood monitoring. 

Multisource Data Integration: Combining optical imagery 

with radar data (e.g., Sentinel-1 SAR) may improve 

classification performance in challenging conditions like 

cloud cover or shadowed areas  

Self-Supervised Learning: Leveraging contrastive 

pretraining methods such as SimCLR on unlabeled data can 

reduce annotation costs and enhance model generalization 

across regions. 
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