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Abstract: Remote sensing is an important mechanism for monitoring and oversight the environment, natural resources, and human
activities. In this research, the focus was on utilizing deep learning (DL) algorithms, specifically a Convolutional Neural Network
(CNNs) model with a U-Net architecture, for the classification of satellite image and because of there are multiple and extensive
research contributions to the study of traditional artificial intelligence approaches in the field of remote sensing, this study was
limited to a comprehensive review of some previous studies in this field. As for DL, a U-Net model was developed, utilized and it
was trained on Sentinel-2 satellite image have a spatial resolution of 10 meters. The training stage was centered on data covering the
Egypt especially the Delta region and the Nile Valley due to their agricultural and environmental importance. The model achieved a
classification and segmentation accuracy of 94.14% and an Jaccard coefficient (I0U) value of 87.64%. These results confirm the
strong potential of DL models, such as U-Net that resulted high accuracy in satellite image classification and segmentation tasks,
especially when used specific geographical regions with distinctive characteristics.
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1. Introduction

The way we can see and understand what's happening on
Earth from far away keeps getting better. There's been big
improvements lately in using satellites and other remote
Sensing techniques to keep track of nature, the environment,
and what we humans are doing and the amount and types of
satellite data have just exploded. So, we've really needed to
come up with smarter ways to dig through it all to pull out
the right info quickly. DL has been getting lots of attention
because it’s so good at finding patterns, even complicated
ones in massive piles of data. These techniques totally blow
away the old ways of analyzing satellite images. DL has
kicked butt at picking out objects and labeling different parts
of images. When it comes to making sense of remote
sensing data, deep learning seems to really have a lot going
for it. It's shown it can be extremely useful for types of tasks
like identifying image classification, object detection, image
Segmentation and Change detection. Khelifi and Mignotte
[1]; Zhu et al. [2]; Dritsas and Trigka [3]

Land Use and Land Cover Change (LU/LC) is going
through swift transformations on account of study of human
population, superior to highly different countryside’s,
especially between urban and rural environments. This vital
character demands studies across various dimensional and
worldly scales. The study evaluates the accomplishment of
machine learning algorithms in classifying multi-
determination satellite images for LU/LC discovery. Three
classification methods Random Forest (RF), Support Vector
Machine (SVM), and their shapely combination were tested
following harsh preprocessing. Results confirmed that SVM
obtained accuracy above 0.96, stressing the importance of

selecting proper algorithms for monitoring land changes in
quickly growing atmospheres. Rahman et al. [4]

In a study focused on classification in Beijing using
Sentinel-2 satellite image established classifiers like SVM
and default RF worked out categorization veracity levels of
47.1% and 79%, individually, when using RGB bands.
Zhang and others. [5] Traditional Al algorithms like SVM,
Decision Trees, and K-Means are productive for classifying
Sentinel-2 satellite image, that offers extreme-resolution
dossier for land cover tasks. These forms label features like
houses, roads, and water bodies accompanying extreme
veracity. Unsupervised methods like ISODATA to act well
when refined to handle assorted pixels. Abburu and Golla.
[6] The study presents a hybrid ensemble method for joining
ANN, SVM, and Classification Trees, enhancing
classification accuracy to 95.6% for constructions, roads,
and plants. The approach outperforms individual classifiers
and standard FMV while asserting computational
effectiveness. Salah [7]. Artificial neural networks (ANN)
are established in remote sensing for LU/LC categorization,
upholding requests like urban preparation. While ANN
offers strong pattern acknowledgment, added arrangements
like SVM, fuzzy logic, and genetic algorithms each have
singular ~ substances  and restraints inaccuracy,
interpretability, and computational effectiveness. Abaidoo et
al. [8]

DL algorithms have given better performance in satellite
image classification, especially accompanying the chance of
high- resolution imagery from platforms like Sentinel-2A
and Sentinel-2B. These satellites supply 13 multispectral
bands at variable spatial resolutions (10 m, 20 m, and 60 m),
contribution rich spectral and geographical information
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important for preparation deep neural networks. In
particular, CNNs have demonstrated strong performance in
learning hierarchical geographic and spectral features from
satellite imagery without the need for manual feature
extraction. In contrast to traditional methods, DL methods
have the ability to independently acquire meaningful features
directly from raw pixel data. Drusch et al. [9]; Kussul et al.
[10]; lenco et al. [11]; Zhang and Roy [12]; Ayush et al. [13]

Studies employing Sentinel-2 imagery have displayed
that DL models outperform classical classifiers Special
scenarios, specifically when abundant, labeled datasets are
convenient. For example, CNN based on U-Net located
models applied to city land cover categorization have
achieved overall accuracies surpassing 98% when prepared
with Full-bandwidth Sentinel-2 data, significantly lowering
misclassification in complex districts such as class confines.
These models more exhibit greater strength to spectral
contrast and are Suitable for capture both worldwide
framework and fine-grained analyses inside the imagery. Ma
et al. [14]; Zhang et al. [15]

U-Net is a type of CNNs design developed specifically
designed for semantic segmentation, and it was originally
tailored for use in biomedical concept treatment applications.
Ronneberger et al. [16]. U-Net has because gained extensive
ratification in various fields, containing Remote sensing and
segmentation of satellite images due to its ability to produce
exact, pixel predictions Khan et al.[17] The construction
trails a symmetric encoder-interpreter makeup: the
contracting course  captures  circumstances through
successive loop and pooling movements the broad pathway
expedites exact localization by employing up sampling
movements and merging high-determination dimensional
details from the encoder through skip connections.
Ronneberger et al[16].

One of the key strengths of U-Net is its ability to do well
with relatively limited training datasets, making it ideal for
remote sensing uses where annotated data may be limited. In
satellite image classification, U-Net is particularly direct at
extracting detailed looks to a degree roads, buildings, and
water bodies, even in complex city surroundings. Its end-to-
end architecture enables it to learn both reduced-level and
high-ranking features, happening in extreme classification
veracity across diversified LC classes. As a result, U-Net has
become a standard structure for DL-based segmentation of
high-resolution remote sensing image. Zhang et al. [18]; Li
etal. [19]

DL has emerged as a transformative solution, as
demonstrated by the evaluation of seven architectures
(SegNet, PSPNet, UNet, UNet++, DepLabV3+, SegFormer,
and SegViT) on the ISPRS Potsdam dataset. The results
show that SegViT achieves superior accuracy (85.2% of the
unit of measure) and preserves edges but requires more
computational resources highlighting the need to choose a
task-specific model that balances accuracy and efficiency.
Jiang.[19]

2. STUDY AREA AND DATA SOURCE

The study area includes sections of the Delta of the
Nile and Valley regions in Egypt.A total of 8 Sentinel-2 tiles
were downloaded using the Google Earth Engine Python

API. Each tile covers an area of 110 x 110 km?, its area is
about 10,000 km? per tile, with imagery provided at a 10-
meter spatial resolution. The total area covered by the tiles is
80,000 km? these tiles were selected to capture a
representative variety of land cover types, including dense
agricultural zones, expanding urban areas, and Water bodies.
The dataset provides a rich foundation for analyzing spectral
variability and detecting seasonal changes in this
ecologically and economically vital region each tile
corresponds to a 11,000 x 11,000-pixel image, The dataset
comprises approximately 800 million pixels distributed
across eight image tiles. In the north, irrigation networks
dominate, while the central areas include mixed croplands
and the southern part shows increasing aridity. Hammam et
al. [20]. The satellite images gathered from 2017 to 2022
were processed to correct for atmospheric interference and to
standardize their radiometric values. Following this
preprocessing, the data was split into three subsets: 70% for
model training, 15% for validation purposes, and the
remaining 15% for final testing, facilitating both
classification and segmentation analyses. Goodfellow et al.
[21]

Sentinel-2 is a dual-satellite Earth observation mission
developed by the European Space Agency (ESA) under the
Copernicus Programmer. It supplies multispectral data
across 13 primary bands covering the visible, near-infrared,
and shortwave infrared spectral regions. Each Sentinel-2
satellite has a swath width of 290 kilometers, allowing for
broad-area coverage in a single pass. Moreover, the
constellation’s five-day revisit interval enhances its capacity
to monitor dynamic environmental and agricultural changes
over time. Drusch et al. [9].

TABLE 1 Attribute and its specification of specification of Study area

Attribute Specification
Region Nile Delta & Valley, Egypt
Tile Count 8
Single Tile Coverage 110 x 110 km? =~ (10,000 km?)
Total Area 80,000 km?
Image Dimensions 11,000 x 11,000 pixels
Aggregate Pixels 800 million
Resolution 10m (MSI)
Temporal Coverage 2017-2022
Processing Level L2A (Bottom-of-Atmosphere)

The satellite imagery used in this study was obtained
from Sentinel-2 Level-2A (L2A) products, which provide
Bottom-of-Atmosphere (BOA) reflectance values, ensuring
consistency in radiometric and atmospheric conditions.
Specifically, Bands 2 (Blue), 3 (Green), and 4 (Red) each
with a 10-meter spatial resolution were individually
downloaded using the Google Earth Engine Python API and
later composited into true-color RGB images via Python
scripting. These bands correspond to central wavelengths of
approximately 496.6 nm (B2), 560 nm (B3), and 664.5 nm
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(B4), offering high fidelity in capturing surface features and
land cover patterns. All images were exported in
GeoTIFF(.tif) format, which preserves geospatial metadata
and ensures compatibility with remote sensing and GIS
software for subsequent analysis. The Sentinel-2 Level-2A
surface reflectance data, provided through Google Earth
Engine, offers harmonized imagery suitable for land cover
classification and change detection (Google Earth Engine,
n.d.). [22]

C)
FIGURE 1 A general view of the study area from (a) Sentinel-2 and (b) OpenStreetMap, respectively. And it includes a tile divided into 9 images.

3. METHODOLOGY

A general overview of the proposed methodology is
illustrated in Figure 3. This framework summarizes the
sequential stages starting from Sentinel-2 image acquisition,
preprocessing steps, dataset annotation, model development
and evaluation. Each of these phases is elaborated upon in
the following subsections.
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FIGURE 2 A sample of the uploaded images, bands 2, 3, and 4 in order, and lastly the color composite image.

Data collection and preparation.

preparing it for analysis.

| Phase 1 I—b
\.

» This phase will involve collecting a variety of remote sensing data and

~

| Phase 2 I—b

Model development and evaluation.
» This phase will involve developing and evaluating deep learning models for
remote sensing applications.

J

FIGURE 3 Methodology for Satellite Image Segmentation

3.1 Data collection and preparation:

The dataset was composed and pre-processed using
Python scripts performed within a Jupyter Notebook
environment. Specifically, Sentinel-2 Level-2A imagery was
achieve via the Google Earth Engine Python APl and were
filtered using cloud masks (based on the QA60 band) In
addition, atmospheric corrections were applied through the
built-in functions where Bands 2 (Blue), 3 (Green), and 4
(Red) were separately downloaded each tile. These bands

were therefore composited into RGB (natural color) images
utilizing Python, accompanying each Sentinel-2 tile
processed individually to maintain spatial integrity.
Successive the image preparation, these images were
imported inside the image-annotator Tool up to manually
annotate preparation masks, enabling the creation of marked
datasets for supervised learning. That workflow ensured
effective data treatment and correct annotation, facilitating
the incident and preparation of the DL- CNN (U-Net)
located model.
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FIGURE 4 Sampling of the satellite images (a) for the study area accompanying Original masked image (b)

3.2 Model development and evaluation:

To do acceptable segmentation of Sentinel-2 satellite
imagery, a CNNs based on the U-Net architecture was
achieved. The preprocessed RGB images and their matching
manually described masks were divide into training (70%),
validation (15%), and test (15%) sets. To upgrade model
generalization and strength, data augmentation methods
containing flipping, turn, and shine adjustment were
handled. This model was trained using a explicit cross-
entropy loss function in addition to the Adam optimization
algorithm. To improve generalization in addition avoid
overfitting, early stopping in addition dynamic learning rate
adjustments were included during the training phase.
Goodfellow et al. [21]

3.2.1  CNNs and U-Net Architecture for Satellite
Image Analysis

U-Net is a form of Convolutional Neural Network (CNN)
that is optimized for image segmentation. Yele.et al. [24]
Convolutional Neural Networks (CNNs) are effective class
of deep learning models established in computer vision
projects due to their skill to automatically extract spatial
features from images. Upadhyay et al. [25]. In remote
sensing, CNNs play an important role in defining satellite
imagery, contribution high accuracy in classification, object

input
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.
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|~-—g

[T S e 8 m—)

detection, and segmentation tasks. He et al. [26]. Among
differing CNN-located models, the U-Net architecture is
prominent all at once of the most active for semantic
segmentation. Basically, developed for biomedical image, U-
Net has been favorably used to remote sensing on account of
its encoder—decoder construction and skip connections that
maintain spatial analyses Ronneberger et al. [16].

3.2.2  Parameters and Hyperparameters in Deep
Learning Models:
In DL models, parameters relate  to the values
automatically learned during training, for example

convolutional layer weights and biases that are updated
During backpropagation process .Goodfellow et al. (2016).
In contrast, hyperparameters are user-defined configurations
set superior to training that rule the learning process itself,
containing the learning rate, batch size, and dropout rate. In
this study, hyperparameters were orderly optimized as
itemized in Table 2, shared methods like fixed random
seeding and input normalization (Min Max Scaler) to
establish reproducibility. Notably, absolute hyperparameters
(such as, the number of convolutional filters) are design-
dependent, while possible choice (like, the loss function)
generally management the optimization process

i
|
o

-
|

output
segmentation
map

=» conv 3x3, RelLU
copy and crop

# max pool 2x2
4 up-conv 2x2
= conv 1x1

FIGURE 5 U-Net architecture adapted for semantic segmentation of Sentinel-2 satellite imagery, including encoder, decoder, skip connections, and output
layer. Ronneberger et al. [16].
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Figure 6. Workflow of the U-Net-Based Semantic Segmentation Process

TABLE2 Hyperparameter of the model

Hyperparameter Value/Range
Image Patch Size 256x256
Image Channels 3 (RGB)
Train Size 70%
Validation Size 15%
Test Size 15%
Random State 100
Batch Size 16
Optimizer Adam (B:=0.9, p2=0.999)
Learning Rate 0.001
Loss Function Categorical Cross-Entropy
Number of Classes 6
Activation Softmax

3.2.3  Comprehensive Evaluation of the Satellite Image

Segmentation Model:

The performance of the DL model for satellite image
segmentation was evaluated wusing standard metrics,
including Precision, Recall, F1-score, Accuracy, and Jaccard
coefficient that named in Al Intersection over Union (loU).
Minaee et al. [27]

The model was trained and tested using Google Colab
Pro with a Tesla T4 GPU, achieving efficient resource
utilization: 53.3% of system RAM, 60.0% of GPU RAM,
and 14.6% of disk space. The overall Precision was 87.13%,
reflecting the proportion of correct positive predictions
among all predicted positives. The model achieved a recall
score of 85.36%, indicating its effectiveness in detecting true
positive instances within the dataset. The F1-score, which
balances precision and recall, was 86.64%, and the loU
achieved 87.64%, indicating strong agreement between
predicted and ground truth masks. The total accuracy was
94.14%. The metric evaluates the spatial agreement between
the predicted segmentation output and the ground truth (GT)
mask, reflecting the proportion of their intersection relative

to their union. It serves as an indicator of the model’s
effectiveness in accurately delineating target regions the
following equations were used to calculate the metrics.

(TP + TN)

Accuracy - (TP + FP +FN +TN) eq (1)
Precision = —(TPTf 7P eq (2)
Recall = (T%PFN) eq (3)
Fioscore =2 x eI ca
loU = s eq (5)

~ (TP + FP + FN)

Here, TP indicates correctly identified positive cases, FP
refers to incorrectly classified negatives, and FN represents
missed positive instances. The evaluation results confirmed
strong classification accuracy across most categories, with
Water Boundaries (F1-score: 94.04 %) and Vegetation
region (Fl-score: 96.18%) achieving particularly high
scores. In contrast, Road detection yielded a comparatively
lower F1-score (60.00%), indicating potential room for
improvement through model refinement for this specific
class.

Disk
37.4/235.7GB

System RAM
27.2/51.0GB

GPU RAM
9.1/15.0GB

FIGURE 4 Computer Resources Used
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FIGURE 5 A sample of the results during the test phase

4. RESULTS ANALYSIS AND
INTERPRETATION

4.1 CNN U-Net Model Performance:

CNNs established the U-Net architecture was grown and
trained for the semantic segmentation (Classification) of
satellite images. The model was evaluated utilizing several
performance metrics containing overall accuracy, precision,
recall, F1-score, and (loU). The model reached an overall
accuracy of 94.14%, signifying its powerful capability
wrongly classifying the majority of pixels in the test dataset
the class-wise appearance showed variation between the land
cover types. The vegetation area class obtained the best
classification accuracy of 97.18%, followed by water bodies
accompanying 93.07%, and bare ground accompanying
95.01%. The built-up area class is well classified, with an
accuracy of 81.41%. The model explained strong overall
performance accompanying forceful test scores: 94.14%
accuracy, 85.63% recall, an 86.64 Fl-score, and 87.13%
loU. However, the road class demonstrated significantly
lower accuracy at just 65.03%. This underperformance is
probably attributable to two key challenges: the class's
small-minded linear features and its spectral characteristics
that approximately resemble adjacent sides in the imagery.
These results express the model's powerful and balanced
ability to discover and correctly segment the various land
cover classes, making it suitable for high-accuracy remote
sensing applications.

4.2 Class- wise Accuracy Analysis:

The class-wise accuracy study determines a detailed
understanding of how efficiently the CNN U-Net model
classified each land cover class. This evaluation helps
identify that classes the model performed right on in addition
that one’s may require further cultivation. Generally, classes
accompanying distinct spatial or spectral features likely to
yield higher classification accuracies, even though more

complex or visually similar groups pose greater challenges.
A comprehensive concise of the analysis accuracy each class
is presented in the table 4, offering a more transparent view
of the model’s depiction across distinct land cover types. If
we focus on the results, we will notice a difference between
the overall accuracy and the rest of the criteria. this
difference is a result of class imbalance such as bare ground,
vegetation and water bodies dominate the dataset leading to
higher accuracy while underrepresented classes like roads
and unlabeled suffer from reduced precision and recall due
to their limited spatial extent and spectral similarity with
adjacent features and this will also be reflected in the overall
criteria.

Confusion Matrix a table used to evaluate the
performance of a classification model.to further evaluate the
classification performance of the U-Net model, a confusion
matrix was generated. This matrix provides a detailed
breakdown of the correctly and incorrectly classified pixels
across all land cover classes. It highlights class-wise
prediction accuracy and helps identify where the model
tends to misclassify certain classes, such as roads and
unlabeled areas.

TABLE 3 Overall Evaluation

Hyperparameter Value/Range
Metric Value
Accuracy 94.14%
Precision 87.13%
Recall 85.63%
F1-Score 86.64%
loU 87.13%
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TABLE 4 Class-wise Evaluation

Class Accuracy precision Recall F1-Score
Built-up Areas 86.14 % 86.65 % 81.41 % 83.95%
Water bodies 93.07 % 95.14 % 93.07 % 94.09 %
Vegetation Areas 97.18 % 95.24 % 97.18 % 96.20 %
Bare Ground 95.01 % 94.64 % 95.01 % 94.83 %
Roads 55.28% 65.56 % 5528 % 59.99 %
Unlabeled 49.65 % 59.10 % 49.65 % 53.97 %

classified pixels, while off-diagonal values indicate misclassifications.

Table 5. Confusion matrix showing the classification performance of the U-Net model across all land cover classes. Diagonal values represent correctly

True\Pred Bare Ground Water Bodies Roads Vegetation Built-up Unlabeled
Bare Ground 168,858,194 1,598,932 126,836 1,762,015 1,991,802 14,677
Water Bodies 3,909,055 74,933,249 59,621 648,118 157,265 119,632
Roads 205,139 57,815 977,065 322,507 250,490 4,116
Vegetation 815,714 791,568 223,668 65,271,102 729,050 24,544
Built-up 3,213,266 83,765 133,646 2,184,249 21,746,478 2,959
Unlabeled 81,398 381,500 18,377 116,420 29,003 1,068,125

0.049 Loss Accuracy
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FIGURE 6. Training and Validation metrics for semantic segmentation for satellite image
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FIGURE 7. The predicted images representing 15% [Test the dataset]

The CNN U-Net model demonstrated remarkable
performance, as represented in Figure (7), where it in spite
outperformed the Ground Truth in certain areas, particularly
in water bodies. This reflects its high accuracy in predicting
water boundaries. The model also illustrated notable
capability in identifying built-up regions, verifying its
performance in this class. However, the model failed in some
specific water boundaries, indicating challenges in
accurately distinctive this class under certain conditions.
Additionally, the model illustrated poor performance in
detecting roads, which aligns with the quantitative results
indicating low accuracy for this class likely Because of the
narrow structure of roads and their spectral likeness to
surrounding surfaces.

The CNN U-Net model was also used to satellite images
inadequate Ground Truth data, so that evaluate its
generalization capability. The model presented a high degree
of accuracy in classifying Vegetation region and built-up
areas, capturing the spatial patterns in addition to borders
accompanying powerful clarity. Additionally, bare ground
regions were well-identified, with minimum confusion with
different classes in spite of these strengths, the model
exhibited few disadvantages in classifying road segments,
specifically due to their narrow and lengthened shapes, that
often  resemble  neighboring classes in  spectral
characteristics. However, individual notable progress was
the detection of a small-sized built-up area, that highlights
the model’s sensitivity in addition skill to capture even
minor spatial features. That promises the model can be a
good tool LC segmentation, even in the absence of classified
data that highlights the model’s sensitivity and capability to
capture even small spatial features. This advises the model

maybe a reliable tool for LC segmentation, in spite of the
absence of labeled data.

5. Discussion:

This study is based on previous research and illustrates
the significant potential of deep learning algorithms
particularly the U-Net architecture in remote sensing image
classification and segmentation. This section interprets our
results, discusses current limitations, and shows potential
directions for future research.

5.1 Model Performance and Comparative Insights:

The U-Net model applied in this research gained a
classification and segmentation accuracy of 94.14% in
distinctive LC classes from satellite imagery. This result is
consistent with existing research showing U-Net’s success in
pixel-level image classification and segmentation due to the
encoder and decoder structure including skip connections of
U-Net Keep spatial information through training, enabling
more precise boundary mapping.

Versus to traditional artificial intelligence approaches
such as SVM and RF and deep learning models especially
the U-Nets provides an important benefit by automatically
learning hierarchical and designed for a specific task feature
from raw data, eliminating the need for manual feature
engineering and enhancing model performance in complex
remote sensing tasks and this is consistent with the results
presented in the review phase this is consistent with the
results presented in the review phase of the researches. Zhu
et al. [2] , Rahman et al. [4] and Zhang et al. [5] and Abburu
and Golla. [6] and Salah [7] Abaidoo et al. [8]. The results
were consistent with previous results in U-Net. Ma et al.
[14]; Zhang et al. [15]
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FIGURE 8. segmentation of Sentinel-2 satellite image having a spatial resolution of 10 meters

5.2 Balancing Accuracy and Computational Efficiency:

Computational Efficiency: U-Net provide an acceptable
balance between accuracy and computational cost, which
makes it more applicable than more recent architectures like
SegVit or other transformer-based models, that could lead to
higher accuracy in multi-class classification but require
meaningfully more resources.

Image Resolution: The model achieves good
performance using medium-resolution Sentinel-2 imagery,
showing its ability to detect varying data quality. Although,
Performance is expected to improve with use very high-
resolution (VHR) data. Tong et al [28]

5.3 Limitations:

Geographic Bias: The model was trained on data from
Egypt’s Delta and valley region, which may reduce its
generalization ability to other geographic areas with different
environmental conditions unless retrained or improved by
training on varied data.

Mask Quality Dependency: The accuracy of the model
depends on masks designed manually using Image
Annotator software. If the masks are not designed well, this
will give completely opposite results.

6. CONCLUSION

This research highlighted the capability of a U-Net—based
CNNs for performing classification and segmentation a on
Sentinel-2 satellite data. The model obtains high overall
accuracy (94.14%) and performed well across most LC
classes, particularly agricultural regions and water
boundaries. These results affirm the suitability of U-Net for
remote sensing tasks, especially when working with
medium-resolution  optical data despite its strong
performance, the model showed limitations in accurately
classifying narrow and spectrally ambiguous features such as
roads. This highlights the potential benefit of incorporating
additional data sources, such as SAR imagery, or enhancing
the model architecture with attention mechanisms or multi-
scale learning overall, the proposed approach offers a

Predicted Image

reliable and scalable solution for land cover mapping, with
practical implications for sustainable urban planning, water
resource monitoring, and environmental management.
Future work should focus on improving generalizability
across diverse geographic regions and addressing class
imbalance through data augmentation or customized loss
functions.

6.1 Future Research Directions:

Hybrid Architectures: Performance could be enhanced by
integrating U-Net with attention mechanisms or transformer-
based components to capture both local and global features.

Edge Deployment Optimization: Techniques like pruning
and quantization could be used to reduce model size and
memory usage, facilitating deployment on low-resource
platforms such as UAVs for flood monitoring.

Multisource Data Integration: Combining optical imagery
with radar data (e.g., Sentinel-1 SAR) may improve
classification performance in challenging conditions like
cloud cover or shadowed areas

Self-Supervised Learning:  Leveraging contrastive
pretraining methods such as SimCLR on unlabeled data can
reduce annotation costs and enhance model generalization
across regions.
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