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Abstract: The pervasive expansion of the Internet of Things (IoT) necessitates the development of sophisticated 

security paradigms capable of countering advanced cyber threats, particularly those targeting the compromise of 

cryptographic keys within Fog of Things (FoT) infrastructures. This paper presents an in-depth comparative analysis 

of four prominent machine learning and deep learning models—specifically, a one-dimensional Convolutional Neural 

Network (Conv1D), an Autoencoder-based anomaly detector (AE), Random Forest (RF), and Extreme Gradient 

Boosting (XGBoost)—evaluated for their effectiveness in identifying compromised key attacks using the 

comprehensive CIC-ToN-IoT dataset. We assessed the performance of these models in both binary anomaly detection 

(distinguishing normal traffic from attacks) and multi-class classification scenarios (identifying specific attack types 

such as backdoor, injection, password, and ransomware). Our experimental findings reveal the superior capability of 

the Conv1D model, which achieved an outstanding accuracy of 99.16% in binary detection and 99.98% in multi-class 

classification, coupled with remarkably low false positive and false negative rates. The robustness and generalizability 

of the models were rigorously validated through k-fold cross-validation, label permutation tests, and assessments of 

resilience against noise injection, confirming their stability under varied conditions. Furthermore, analysis of inference 

latency highlights the practical feasibility of deploying these models in real-time within Software-Defined Networking 

(SDN)-enabled fog computing environments to secure IoT ecosystems against the critical threat of cryptographic key 

compromises, offering significant contributions to the field of network security in emerging FoT architectures. 
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1. INTRODUCTION 

The exponential growth of the Internet of Things (IoT) led 

to an era of unprecedented connectivity, but it has 

simultaneously amplified the challenges associated with 

network security. The inherent characteristics of IoT 

devices, often resource-constrained and deployed in 

heterogeneous environments, create fertile ground for 

adversaries seeking to exploit vulnerabilities. Among the 

most critical threats are attacks targeting cryptographic 

keys, which can undermine the confidentiality, integrity, 

and availability of data across the entire IoT infrastructure 

[1]. Consequently, the development of effective, real-time 

detection mechanisms for such sophisticated attacks has 

become paramount. 

Recent advancements in artificial intelligence (AI) and 

machine learning (ML) have significantly transformed the 

landscape of network intrusion detection. These techniques 

empower systems to autonomously learn complex patterns 

and anomalies within vast streams of network traffic data, 

moving beyond the limitations of traditional signature-

based methods [2]. One-dimensional convolutional neural 

networks (Conv1D), in particular, have shown great 

promise due to their inherent ability to capture temporal 

dependencies and sequential patterns prevalent in network 

flow data [3]. Complementing supervised approaches, 
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Autoencoders (AE) provide a powerful unsupervised 

learning paradigm, excelling at modeling normal network 

behavior and flagging deviations that signal potential 

anomalies or attacks. 

While deep learning models often achieve state-of-the-art 

performance, established machine learning algorithms such 

as Random Forest (RF) and Extreme Gradient Boosting 

(XGBoost) remain highly relevant [4][5]. Their strengths 

lie in their interpretability, computational efficiency, and 

robust performance, often derived from ensemble learning 

principles. Comparing these diverse approaches provides 

valuable insights into the trade-offs between accuracy, 

complexity, and deployability. 

This study conducts a rigorous comparative evaluation of 

Conv1D, AE, RF, and XGBoost models specifically for the 

task of detecting and classifying key compromise attacks 

within IoT network traffic. We utilize the comprehensive 

and realistic CIC-ToN-IoT dataset, examining model 

performance in both binary (normal vs. attack) and multi-

class classification contexts to mirror real-world 

operational scenarios [6]. 

The primary contributions of this research are: 

 A comprehensive empirical assessment comparing 

modern deep learning (Conv1D, AE) and ensemble 

machine learning (RF, XGBoost) techniques applied to 

a large-scale, contemporary IoT security dataset. 

 An evaluation of model effectiveness under varying 

data distributions, considering both balanced and 

imbalanced scenarios inherent in security datasets. 
 Validation of model robustness using established 

techniques, including k-fold cross-validation, noise 

perturbation analysis, and label randomization tests. 

 A detailed analysis of model inference latency, 

providing critical insights into the practical feasibility 

of deploying these detection systems in time-sensitive, 

real-time environments like SDN-enabled Fog 

networks. 

 

The subsequent sections of this paper are organized as 

follows: Section 2 reviews related work on machine and 

deep learning approaches for intrusion and key compromise 

attack detection in IoT and Fog computing environments. 

Section 3 details the SDN-based Fog of Things network 

topology relevant to this study. Section 4 describes the 

characteristics of the CIC-ToN-IoT dataset and the data 

preprocessing steps undertaken. Section 5 elaborates on the 

various training models. Section 6 explains the validation 

strategies employed for the evaluated models. Section 7 

presents and discusses the experimental results in detail. 

Section 8 introduces comparative evaluation with State-of-

the-Art Approaches. Finally, Section 9,10 provides 

concluding remarks and outlines potential directions for 

future research.  

 

2. RELATED WORK 

Intrusion Detection Systems (IDS) in IoT and Industrial IoT 

(IIoT) environments have garnered significant attention due 

to the increased frequency of cyber threats targeting 

resource-constrained devices. Multiple studies have 

explored deep learning and ensemble machine learning 

techniques to address the limitations of traditional IDS 

models in detecting sophisticated attacks. 

Arslan et al. (2024) proposed a lightweight 1D 

Convolutional Neural Network (1D-CNN) architecture 

designed specifically for IIoT environments, achieving 

99.9% accuracy across nine attack classes [7]. Their model 

demonstrated real-time applicability and low computational 

overhead, validating the effectiveness of CNNs in scenarios 

where minimal latency is crucial. 

In the context of autoencoder-based anomaly detection, 

Torabi et al. (2023) presented a practical autoencoder 

architecture that utilized vector reconstruction error rather 

than a single scalar error [8]. Their approach allowed more 

precise detection of subtle anomalies across individual 

features, thereby reducing false positives. Similarly, 

another work by Elhoseny and colleagues highlighted the 

enhancement of autoencoder-based IDSs using feature 

selection techniques, leading to reduced dimensionality and 

improved detection rates [9]. These findings motivated our 

use of autoencoders as a baseline anomaly detection 

technique. 

Ensemble learning methods have also been widely studied. 

A notable study by Alasad. proposed a hybrid IDS 

combining CNN for feature extraction and XGBoost for 

classification, resulting in high detection accuracy and 

robustness [10]. Likewise, ensemble models—such as RF 

and XGBoost—have been validated in recent literature for 

their balance of interpretability, accuracy, and resistance to 

overfitting in intrusion detection tasks [11][12].  

Knowledge distillation and deep metric learning were also 

utilized in Wang et al work on lightweight IDSs for cyber-

physical systems, offering a balance between accuracy and 

model efficiency [13].  

Finally, comprehensive reviews, such as the one by 

Kikissagbe and Adda. (2024), provide an overview of 

machine learning-based IDSs in IoT environments and 

highlight the continued need for models that are both 

accurate and computationally feasible [14]. Our work 

contributes to this ongoing effort by benchmarking the 

performance of multiple models (Conv1D, Autoencoder, 

RF, XGBoost) on a large-scale CIC-ToN-IoT dataset, 

focusing on realistic and critical key compromise attacks. 
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3. SDN-BASED FOG OF THINGS (FOT) NETWORK 

TOPOLOGY 

The architecture underpinning this research integrates SDN 

principles with the Fog of Things (FoT) paradigm to create 

a flexible, manageable, and responsive network 

infrastructure suitable for modern IoT deployments. 

Understanding this topology is crucial for contextualizing 

the security challenges and the proposed detection 

mechanisms. An SDN-based FoT network typically 

comprises multiple layers, each serving distinct functions. 

At the lowest layer reside the IoT devices themselves – 

sensors, actuators, smart appliances, and other connected 

endpoints. These devices are responsible for generating 

data, interacting with the physical environment, and often 

operate under significant resource constraints (CPU, 

memory, power). They form the edge of the network, where 

data originates and actions are often executed. 

Above the IoT device layer sits the Fog layer. This layer 

consists of geographically distributed fog nodes, which are 

intermediate computing devices (e.g., routers, gateways, 

micro-servers) positioned closer to the IoT devices than 

centralized cloud servers. The Fog layer provides localized 

computation, storage, and networking capabilities. Its 

primary role is to reduce latency for time-sensitive 

applications, decrease bandwidth consumption towards the 

core network and cloud, and enhance scalability by 

processing data closer to its source. Fog nodes can perform 

initial data aggregation, filtering, and analysis, making the 

overall system more efficient. 

The core innovation in this architecture is the integration of 

SDN. SDN fundamentally decouples the network's control 

plane (which makes decisions about where traffic is sent) 

from the data plane (which forwards traffic based on those 

decisions). In an SDN-FoT topology, a centralized SDN 

controller manages the network infrastructure, including 

the switches and routers connecting IoT devices, fog nodes, 

and potentially the cloud. This controller possesses a global 

view of the network state, enabling intelligent traffic 

engineering, dynamic resource allocation, and centralized 

policy enforcement. Communication between the controller 

and the data plane devices typically occurs via standardized 

protocols (e.g., OpenFlow). This centralized control 

simplifies network management, enhances flexibility, and 

allows for rapid deployment of new services and security 

policies. 

Optionally, a Cloud layer may exist at the top, providing 

centralized, high-capacity storage, intensive computational 

resources for complex analytics (and long-term data 

archiving.  

This layered, SDN-enabled architecture offers significant 

advantages for IoT security. The centralized SDN controller 

acts as a strategic point for deploying intrusion detection 

systems, like the ones evaluated in this paper. By 

monitoring traffic flows managed by the controller, 

anomalies and attacks can be detected early, and mitigation 

actions (e.g., isolating compromised devices, triggering 

rekeying mechanisms) can be orchestrated efficiently 

across the network. The Fog layer itself can host 

lightweight detection agents or enforce policies pushed 

down by the controller, enabling distributed security 

enforcement closer to the potential threats. This hierarchical 

structure, combining centralized intelligence with 

distributed enforcement, is key to securing the complex and 

dynamic FoT environment. 

 

4. DATASET AND PREPROCESSING 

This research utilizes the CIC-ToN-IoT dataset [15], a 

contemporary and comprehensive benchmark specifically 

designed for evaluating intrusion detection systems in IoT 

and IIoT network environments. Its relevance stems from 

the inclusion of diverse data sources, including network 

traffic telemetry (NetFlow) and operating system logs, 

captured from a realistic, medium-scale IoT testbed. The 

dataset encompasses a substantial volume of records (over 

5 million instances) and features (85 initial attributes) 

representing both normal operational traffic and a wide 

spectrum of modern cyberattacks. Crucially for this study, 

it includes specific categories relevant to key compromise 

scenarios, such as backdoor attacks, data injection, 

password guessing attempts, and ransomware, making it an 

ideal choice for assessing the proposed detection models. 

To prepare the dataset for effective model training and 

evaluation, a rigorous preprocessing pipeline was 

implemented. Initially, non-informative metadata columns, 

such as flow identifiers, source/destination IP addresses, 

and timestamps, were removed as they do not typically 

contribute directly to attack pattern recognition and can 

introduce noise or bias. Subsequently, the dataset was 

meticulously cleaned by addressing missing or invalid 

entries. Rows containing NaN (Not a Number) or infinite 

values were identified and removed to ensure data integrity. 

Given the vast scale of the dataset, removing these 

relatively few problematic rows were deemed preferable to 

imputation, which could potentially introduce artificial 

patterns. 

Feature scaling is a critical step for many machine learning 

algorithms, particularly neural networks and distance-based 

methods. Therefore, the numerical features in the dataset 

were scaled using Min-Max normalization, transforming 

each feature to a range between 0 and 1. This prevents 

features with larger numerical ranges from 

disproportionately influencing the model's learning 

process. Following scaling, feature standardization was 

applied to ensure a zero mean and unit variance, further 
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optimizing the data for algorithms sensitive to feature 

distributions. Additionally, features exhibiting low variance 

or constant values across the dataset were filtered out, as 

these provide minimal discriminatory information for 

classification tasks. This resulted in a refined, informative 

feature set optimized for model training[16]. 

Finally, the dataset was split into training and testing 

subsets. To ensure that the class distributions (proportions 

of normal traffic and different attack types) were 

representative in both sets, stratified sampling was 

employed. This is particularly important for security 

datasets, which are often inherently imbalanced. For the 

Conv1D models, the input data required reshaping into a 

format suitable for one-dimensional convolutions, typically 

involving structuring the features for each instance as a 

sequence. 

 

5. METHODOLOGY AND MODELS 

Our methodology employs a two-stage approach to detect 

and classify compromised key attacks. The first stage 

involves binary anomaly detection to differentiate between 

normal network traffic and potentially malicious flows. The 

second stage performs multi-class classification on the 

identified anomalous traffic to pinpoint the specific type of 

key compromise attack. We evaluated four distinct models 

within this framework: Conv1D, Autoencoder (AE), 

Random Forest (RF), and XGBoost (XGB). 

 

5.1. Convolutional Neural Network (Conv1D) 

Recognizing the sequential nature of network traffic data, 

we designed two separate Conv1D models tailored for the 

binary and multi-class tasks. 

Binary Conv1D: This model was architected for anomaly 

detection. It features a sequence of one-dimensional 

convolutional layers, each followed by a Rectified Linear 

Unit (ReLU) activation function to introduce non-linearity 

and max-pooling layers to reduce dimensionality and 

extract dominant features. The convolutional layers learn 

hierarchical spatial features from the input sequence 

(representing network flow features). These layers are 

followed by fully connected (dense) layers that integrate the 

learned features. The final output layer uses a sigmoid 

activation function, producing a probability score between 

0 and 1, indicating the likelihood of the input being 

anomalous. The model was trained using the Adam 

optimizer and binary cross-entropy loss function, suitable 

for binary classification tasks. 

Multi-Class Conv1D: This model was designed to classify 

the specific type of attack among the identified anomalies. 

Similar to the binary model, it utilizes stacked 

convolutional layers with ReLU activations and max-

pooling. To mitigate overfitting, dropout layers were 

incorporated, randomly setting a fraction of neuron 

activations to zero during training, thus promoting model 

generalization. The final dense layer employs a softmax 

activation function, outputting a probability distribution 

across the different attack classes (backdoor, injection, 

password, ransomware, plus the normal class for 

completeness in some evaluations). Training employed the 

Adam optimizer with categorical cross-entropy loss, 

appropriate for multi-class classification. Early stopping 

was implemented as a regularization technique, monitoring 

validation loss and halting training when performance on 

the validation set ceased to improve, preventing overfitting 

to the training data. 

 

5.2. Autoencoder (AE) 

An Autoencoder was implemented as an unsupervised 

approach primarily for binary anomaly detection. The AE 

consists of two main components: an encoder and a 

decoder. The encoder maps the high-dimensional input data 

to a lower-dimensional latent representation (bottleneck 

layer), capturing the essential characteristics of the data. 

The decoder then attempts to reconstruct the original input 

data from this latent representation. The AE was trained 

exclusively on normal network traffic data. The underlying 

principle is that the AE will learn to reconstruct normal 

patterns effectively, resulting in low reconstruction errors. 

However, when presented with anomalous data (attacks), 

which deviates significantly from the learned normal 

patterns, the reconstruction error will be substantially 

higher. An anomaly score is calculated based on this 

reconstruction error (e.g., Mean Squared Error). A 

threshold, determined empirically from the Receiver 

Operating Characteristic (ROC) curve analysis on a 

validation set (optimizing the trade-off between true 

positives and false positives), is used to classify instances 

as normal or anomalous based on their reconstruction error. 

 

5.3. Random Forest (RF) 

As a representative ensemble learning method, a Random 

Forest classifier was implemented. RF operates by 

constructing a multitude of decision trees during training. 

For classification, each tree in the forest votes for a class, 

and the final prediction is determined by the majority vote. 

Key hyperparameters were carefully tuned: the number of 

trees (n_estimators) was set to 50, providing a balance 

between performance and computational cost. The 

maximum depth of each tree (max_depth) was limited to 15 

to prevent overfitting and control model complexity. The 

number of features considered when splitting a node 

(max_features) was set to the square root of the total 

number of features, a common heuristic that promotes 

diversity among the trees. RF is known for its robustness to 
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overfitting and its ability to handle high-dimensional data 

effectively. 

 

5.4. Extreme Gradient Boosting (XGBoost) 

XGBoost, another powerful gradient boosting algorithm, 

was also evaluated. XGBoost builds trees sequentially, with 

each new tree attempting to correct the errors made by the 

previous ones. It incorporates regularization techniques to 

prevent overfitting and employs optimizations for speed 

and performance. For this study, the XGBoost classifier 

was configured with 50 boosting rounds (n_estimators). 

The maximum depth of the trees (max_depth) was set to 10, 

and the learning rate was set to 0.1, controlling the 

contribution of each tree. The objective function was set to 

multi:softmax for multi-class classification tasks, requiring 

the specification of the number of classes. XGBoost is often 

lauded for its high accuracy and efficiency. 

 

5.5. Evaluation Metrics 

The performance of all models was rigorously evaluated 

using standard classification metrics: 

Accuracy: The overall proportion of correctly classified 

instances. 

Precision: The proportion of correctly identified True 

Positive (TP) instances (attacks) out of all instances True 

Positive and False Positive (FP) as in equation 1. 

 

Precision =  TP / (TP +  FP)      (1) 

 

Recall (Sensitivity or True Positive Rate): As calculated 

using equation 2 represents the proportion of actual positive 

instances (attacks) that were correctly identified from all TP 

and False Negatives (FN). 

 

Recall = TP / (TP + FN)                          (2) 

 

F1-Score: The harmonic mean of precision and recall, 

providing a balanced measure as in equation 3. 

 

𝐹1 =  2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)      (3) 

 

False Positive Rate (FPR): The proportion of negative 

instances (normal traffic) incorrectly classified as positive. 

False Negative Rate (FNR): The proportion of positive 

instances (attacks) incorrectly classified as negative. 

ROC-AUC: The Area Under the Receiver Operating 

Characteristic Curve, measuring the model's ability to 

distinguish between classes across different thresholds. 

These metrics were calculated for both binary anomaly 

detection and multi-class classification tasks, using the held-

out test set, ensuring a comprehensive assessment of each 

model's capabilities in the context of detecting compromised 

key attacks. 

Table 1 summarizes the types, key strengths, and limitations 

of Conv1D, AE, RF, and XGBoost in the context of intrusion 

and anomaly detection. 

 

TABLE 1. Comparative Summary of Machine Learning and 

Deep Learning Models Used for Key Attack Detection 

Model Type Key Strengths Limitations 

Conv1D Deep Learning 

Great for 

sequential data, 

automatic 

feature learning 

Needs 

reshaped input, 

longer training 

time 

AE 
Unsupervised 

DL 

Ideal for 

anomaly 

detection, no 

labels needed 

Sensitive to 

design, hard to 

interpret 

RF 
Ensemble 

(Bagging) 

Robust, fast, 

interpretable 

Less effective 

for sequence 

data 

XGBoost 
Ensemble 

(Boosting) 

High accuracy, 

handles missing 

values well 

Complex 

tuning, slower 

training 

 

6. VALIDATION STRATEGY 

Ensuring the reliability of the developed intrusion detection 

models in security-critical SDN-FoT networks, a multi-

faceted validation strategy was employed for the primary 

models: the Conv1D multi-class classifier and the 

Autoencoder for binary anomaly detection. 

For the Conv1D multi-class model, three key validation 

techniques were applied: 

Robustness to Input Perturbations: Real-world network data 

is often noisy due to environmental factors or potentially 

manipulated by adversaries. To simulate these conditions, 

Gaussian noise with varying standard deviations (σ = 0.01, 

0.10, 0.50, and 1.00) was systematically injected into the 

features of the test dataset. The model's performance 

(accuracy, F1-score, etc.) was then re-evaluated on this noisy 

data. Consistent performance across different noise levels 

indicates the model's resilience and ability to generalize 

beyond the clean training data. 

Label Shuffling (Permutation Test): To confirm that the 

model learned genuine patterns correlating features with 

attack types, rather than memorizing the training data, a label 

shuffling test was conducted. The class labels of the test set 

were randomly permuted, effectively breaking any true 

relationship between features and labels. A well-trained 

model should exhibit performance close to random chance on 

this shuffled data preventing data leakage or overfitting. 

K-Fold Cross-Validation: To assess performance consistency 

across different subsets of the data and mitigate potential bias 

from a single train-test split, 3-fold cross-validation was 
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performed during the model development phase. The data 

was divided into three folds; the model was trained on two 

folds and validated on the remaining fold, rotating the 

validation fold three times. Averaging the performance 

metrics across the folds provides a more robust estimate of 

the model's generalization capability [17]. Crucially, strict 

separation between training, validation, and the final test set 

was maintained throughout the process to prevent any form 

of data leakage. 

For the AE model, validation focused on its anomaly 

detection capability: Optimal Threshold Determination: The 

effectiveness of the AE hinges on selecting an appropriate 

threshold for the reconstruction error to distinguish 

anomalies from normal data. This threshold was determined 

using the ROC curve generated on a separate validation set 

(distinct from the final test set). The optimal threshold was 

chosen as the point on the ROC curve that maximized the 

difference between the True Positive Rate (Recall) and the 

False Positive Rate (TPR - FPR), representing a balanced 

trade-off between detecting attacks and minimizing false 

alarms. 

K-Fold Cross-Validation: Similar to the Conv1D model, 3-

fold cross-validation was applied during the AE's training 

phase (using only normal data) to evaluate the stability and 

generalizability of its reconstruction capability across 

different data partitions. 

These comprehensive validation procedures collectively 

bolster confidence in the reported performance metrics and 

the suitability of the models for deployment in dynamic and 

potentially adversarial SDN-FoT environments. 

 

7. RESULTS AND DISCUSSION 

The experimental evaluation rigorously assessed the 

performance of the Conv1D, Autoencoder (AE), Random 

Forest (RF), and XGBoost (XGB) models in detecting and 

classifying compromised key attacks within the CIC-ToN-

IoT dataset. The evaluation followed the two-stage 

framework: initial binary anomaly detection followed by 

multi-class classification of identified anomalies. 

 

 

7.1. Binary Anomaly Detection Performance 

In the first stage, the models were tasked with the 

fundamental challenge of distinguishing normal network 

traffic from any anomalous flow. The performance metrics 

provide clear insights into each model's effectiveness in this 

binary classification scenario as shown in Table 2. 

The Conv1D model emerged as the top performer, achieving 

an exceptional accuracy of 99.16%. More critically, it 

demonstrated a high precision of 98.26% and an outstanding 

recall of 99.97%, culminating in an F1-score of 99.11%. The 

extremely low False Negative Rate (FNR) of 0.03% is 

particularly noteworthy in a security context, as it signifies 

that the model missed very few actual attacks. While 

minimizing missed attacks is crucial, the False Positive Rate 

(FPR) of 1.55% indicates a reasonably low level of false 

alarms, where normal traffic is incorrectly flagged as 

malicious. This balance is vital for practical deployment to 

avoid overwhelming security analysts with spurious alerts. 

The Autoencoder (AE), operating unsupervised based on 

reconstruction error, achieved a respectable accuracy of 

97.31%. However, its performance was characterized by a 

higher FPR (4.63%) and a higher FNR (0.97%) compared to 

the supervised models. This suggests that while the AE 

effectively learns the patterns of normal traffic, the 

thresholding mechanism required to distinguish anomalies 

leads to a less precise separation, resulting in more false 

alarms and a slightly higher number of missed attacks 

compared to Conv1D. 

The ensemble learning models, Random Forest (RF) and 

XGBoost (XGB), delivered strong and highly competitive 

results. Both achieved accuracy levels around 99% (RF: 

99.00%, XGB: 99.38%). XGBoost slightly edged out RF and 

even Conv1D in terms of accuracy, precision (99.50%), 

recall (99.50%), F1-score (99.20%), and achieved the lowest 

FPR (1.00%) and a very low FNR (0.50%). The high ROC 

AUC scores for both RF and XGB (near 0.9998) further 

confirm their excellent discriminative capabilities in this 

binary task. Their performance underscores the power of 

ensemble methods in handling tabular data effectively. 

Comparing the models, while XGBoost showed marginally 

better metrics in the binary task, Conv1D's extremely low 

FNR (0.03%) makes it highly compelling for scenarios where 

minimizing missed threats is the absolute priority.  

As illustrated in Fig. 1, the Conv1D model demonstrates 

excellent classification performance, with a near-perfect 

ROC curve and a confusion matrix reflecting high accuracy, 

low false positive rate, and minimal misclassifications 
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TABLE2. Comparison of Binary Classification Performance Metrics for AE, Conv1D, Random Forest, and 

XGBoost Models on the CIC-ToN-IoT Dataset. 

Metric (AE) Conv1D  (RF) XGBoost 

Accuracy 0.9731 0.9916 0.9900 0.9938 

Precision 0.9602 0.9826 0.9800 0.9950 

Recall 0.9903 0.9997 0.9900 0.9950 

F1-Score 0.9750 0.9911 0.9850 0.9920 

False Positive Rate (FPR) 0.0463 0.0155 0.0140 0.0100 

False Negative Rate (FNR) 0.0097 0.0003 0.0100 0.0050 

Figure 1: ROC Curve and Confusion Matrix of the Conv1D Model for Binary Anomaly Detection on the CIC-ToN-IoT Dataset 

TABLE 3. Performance Comparison of evaluated  Models for Multi-Class Classification of Key Compromise Attacks  

 

 

 

 

 

 

 

 

 

 

 

 

 

       Table 4. Comparative Analysis of Intrusion Detection Approaches 

 

 

 

 

Metric (RF) (XGB) Conv1D 

Accuracy 0.74 0.78 0.9998 

Macro F1-Score 0.85 0.85 .999 

Backdoor Precision 1.00 1.00 1.00 

Backdoor Recall 1.00 1.00 0.96 

Injection Precision 0.85 0.89 1.00 

Injection Recall 0.49 0.55 1.00 

Password Precision 0.69 0.72 1.00 

Password Recall 0.93 0.95 1.00 

Ransomware Precision 0.99 0.98 1.00 

Ransomware Recall 0.99 0.99 1.00 

Feature Our Approach (Conv1D) 
CNN-Based Approach 

[Seyedkolaei et al.] 

FL-Based Approach  

[Talpini et al.] 

DLModel Conv1D CNN Federated Learning (FL) 

Dataset CIC-ToN-IoT DNN-EdgeIIoT CIC-ToN-IoT 

Attack Focus Key compromise attacks General attacks General attacks 

Binary Classification F1-
Score 

99.11% 100% ~99% (with clustering) 

Multi-class Accuracy 99.98% 99.4% (6-class) Not directly comparable 

False Negative Rate (FNR) 0.03% Not reported Not reported 

Computational Paradigm Centralized Centralized Distributed 

Key Strength Very low FNR High accuracy across 
tasks 

Privacy preservation 
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7.2. Multi-Class Classification Performance 

The second stage focused on classifying the identified 

anomalies into specific key compromise attack types 

(backdoor, injection, password, ransomware) along with the 

normal class. This finer-grained classification is crucial for 

understanding the nature of the threat and initiating 

appropriate response actions. 

In this more challenging multi-class scenario, the Conv1D 

model demonstrated truly exceptional performance, 

achieving an overall accuracy of 99.98%. Analysis of the 

confusion matrix revealed near-perfect classification across 

all categories, including the individual attack types. 

Precision, recall, and F1-scores for each class were 

consistently high, indicating that the model not only achieved 

high overall accuracy but also effectively distinguished 

between the different, often subtly distinct, attack patterns. 

The FNR remained extremely low across all attack classes, 

reinforcing its reliability. 

The Random Forest and XGBoost models, while performing 

well, did not reach the same level of near-perfection as the 

Conv1D in the multi-class task. Although their overall 

accuracies were still high, the confusion matrices showed 

slightly higher instances of misclassification between certain 

attack types compared to Conv1D. This suggests that while 

ensemble methods are powerful, the Conv1D's ability to learn 

intricate feature representations directly from the sequential 

data provided an edge in differentiating between the specific 

signatures of the various key compromise attacks. 

The Autoencoder is inherently an anomaly detection method 

and not directly suited for multi-class classification of attack 

types without significant modification  Therefore, its results 

are primarily relevant to the binary detection stage. 

Table 3 presents a comparative evaluation of Random Forest 

(RF), XGBoost (XGB), and Conv1D models for multi-class 

classification of key compromise attacks, showing the 

superior performance of Conv1D in the multi-class setting 

with the convolutional filters effectively act as learnable 

pattern detectors, becoming specialized in identifying the 

signatures associated with attacks.  

 

7.3. Validation And Robustness 

The validation tests further solidified the credibility of the 

results, particularly for the Conv1D model. Performance 

remained remarkably stable even when significant Gaussian 

noise (up to σ=0.50) was added to the test data, demonstrating 

robustness to input perturbations. The label shuffling tests 

confirmed that the model's high accuracy was due to learning 

genuine patterns, as performance dropped to near-random 

levels when labels were permuted. Consistent results across 

the 3-fold cross-validation indicated good generalization and 

low sensitivity to specific data splits. 

 

7.4. Inference Latency 

Practical deployment in SDN-FoT environments demands 

low inference latency. Measurements revealed that all models 

exhibited relatively fast prediction times on the test set. While 

deep learning models like Conv1D can sometimes have 

higher latency than simpler models, optimizations and the 

specific architecture used resulted in inference times suitable 

for near real-time detection within the fog layer or at the SDN 

controller, supporting their feasibility for operational 

deployment. 

 

8. COMPARATIVE EVALUATION WITH STATE-OF-

THE-ART APPROACHES 

This section presents a comparative evaluation of our 

Conv1D-based approach with two recent methodologies in 

IoT network security: a CNN-based multiclass classification 

model by Abdi Seyedkolaei et al. (2025) and a clustering-

enhanced federated learning (FL) method by Talpini et al. 

(2023). 

 

8.1 Comparison With CNN-Based Multiclass 

Classification 

The study by Abdi Seyedkolaei et al [18], utilized a CNN 

architecture to classify various attack types across multiple 

IoT/IIoT datasets. While both approaches employ 

convolutional models, our Conv1D architecture is optimized 

for detecting key compromise attacks in SDN-Fog-IoT 

networks using a two-stage detection pipeline—binary 

anomaly detection followed by multi-class classification. In 

contrast, their model targets a broader range of attacks using 

direct multiclass classification. Performance-wise, both 

models achieved high F1-scores, with our method attaining 

99.11% in binary classification and 99.98% accuracy in 

multiclass classification. A key strength of our approach is 

the exceptionally low false negative rate (0.03%), which is 

critical for reliable anomaly detection. 

 

8.2 Comparison with Clustering-Enhanced Federated 

Learning 

Talpini et al [19]. proposed a distributed learning strategy 

leveraging clustering to improve FL performance and address 

data heterogeneity. Although both approaches use the CIC-

ToN-IoT dataset, their model focuses on preserving privacy 

through decentralization, whereas ours emphasizes 

centralized intelligence within the SDN controller. Their 

clustering-enhanced FL achieved an approximate F1-score of 

99% in binary classification. However, a direct comparison 

with our model is limited due to differences in evaluation 

strategy and architectural design. 
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8.3 Summary and Implications 

Table 4 summarizes the key distinctions between the three 

methods, highlighting our approach's advantages in 

classification accuracy and false negative reduction. The 

performance comparison shown in Fig. 2 further underscores 

these metrics. A future research direction could explore 

integrating the strengths of these methodologies, such as 

implementing hierarchical intrusion detection systems where 

lightweight FL models operate at the edge and robust 

Conv1D classifiers at fog nodes or controllers. This hybrid 

strategy could offer a balance between detection accuracy, 

scalability, and privacy preservation. 

 
Fig2.Performance Comparison of Intrusion Detection Approaches. 

 

9. CONCLUSION 

This research conducted an in-depth comparative analysis of 

deep learning and ensemble machine learning models for 

detecting compromised key attacks in SDN-enabled Fog-IoT 

networks, using the realistic CIC-ToN-IoT dataset. The 

Conv1D neural network consistently outperformed other 

models, especially in multi-class classification, where it 

achieved 99.98% accuracy and strong precision, recall, and 

F1-scores across all attack types. In binary classification, 

Conv1D achieved the lowest false negative rate (0.03%), 

which is critical in preventing missed detections of security 

threats. The study highlighted the effectiveness of the SDN-

FoT architecture in enabling efficient and scalable intrusion 

detection. The Conv1D model demonstrated high robustness, 

validated through noise injection, label permutation, and k-

fold cross-validation tests. Overall, the results confirm that 

Conv1D is a highly suitable model for analyzing network 

attacks in SDN-controlled fog networks.  

 

10. FUTURE WORK 

Future research directions include exploring hybrid models 

that combine the strengths of different approaches, such as 

using Conv1D for feature extraction followed by an ensemble 

classifier. Investigating the application of attention 

mechanisms within the Conv1D architecture could further 

enhance its ability to focus on the most salient features for 

attack detection. 

Additionally, research into federated learning approaches 

could enable collaborative model training across distributed 

fog nodes without centralizing raw sensitive data, enhancing 

privacy and scalability.  
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