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Abstract: The pervasive expansion of the Internet of Things (1oT) necessitates the development of sophisticated
security paradigms capable of countering advanced cyber threats, particularly those targeting the compromise of
cryptographic keys within Fog of Things (FoT) infrastructures. This paper presents an in-depth comparative analysis
of four prominent machine learning and deep learning models—specifically, a one-dimensional Convolutional Neural
Network (ConvlD), an Autoencoder-based anomaly detector (AE), Random Forest (RF), and Extreme Gradient
Boosting (XGBoost)—evaluated for their effectiveness in identifying compromised key attacks using the
comprehensive CIC-ToN-IoT dataset. We assessed the performance of these models in both binary anomaly detection
(distinguishing normal traffic from attacks) and multi-class classification scenarios (identifying specific attack types
such as backdoor, injection, password, and ransomware). Our experimental findings reveal the superior capability of
the Conv1D model, which achieved an outstanding accuracy of 99.16% in binary detection and 99.98% in multi-class
classification, coupled with remarkably low false positive and false negative rates. The robustness and generalizability
of the models were rigorously validated through k-fold cross-validation, label permutation tests, and assessments of
resilience against noise injection, confirming their stability under varied conditions. Furthermore, analysis of inference
latency highlights the practical feasibility of deploying these models in real-time within Software-Defined Networking
(SDN)-enabled fog computing environments to secure 10T ecosystems against the critical threat of cryptographic key

compromises, offering significant contributions to the field of network security in emerging FoT architectures.

Keywords FoT, Detection, SDN, ConvlD :

1. INTRODUCTION

The exponential growth of the Internet of Things (loT) led
to an era of unprecedented connectivity, but it has
simultaneously amplified the challenges associated with
network security. The inherent characteristics of loT
devices, often resource-constrained and deployed in
heterogeneous environments, create fertile ground for
adversaries seeking to exploit vulnerabilities. Among the
most critical threats are attacks targeting cryptographic
keys, which can undermine the confidentiality, integrity,
and availability of data across the entire loT infrastructure
[1]. Consequently, the development of effective, real-time

detection mechanisms for such sophisticated attacks has
become paramount.

Recent advancements in artificial intelligence (Al) and
machine learning (ML) have significantly transformed the
landscape of network intrusion detection. These techniques
empower systems to autonomously learn complex patterns
and anomalies within vast streams of network traffic data,
moving beyond the limitations of traditional signature-
based methods [2]. One-dimensional convolutional neural
networks (ConvlD), in particular, have shown great
promise due to their inherent ability to capture temporal
dependencies and sequential patterns prevalent in network
flow data [3]. Complementing supervised approaches,
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Autoencoders (AE) provide a powerful unsupervised
learning paradigm, excelling at modeling normal network
behavior and flagging deviations that signal potential
anomalies or attacks.
While deep learning models often achieve state-of-the-art
performance, established machine learning algorithms such
as Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) remain highly relevant [4][5]. Their strengths
lie in their interpretability, computational efficiency, and
robust performance, often derived from ensemble learning
principles. Comparing these diverse approaches provides
valuable insights into the trade-offs between accuracy,
complexity, and deployability.
This study conducts a rigorous comparative evaluation of
ConvlD, AE, RF, and XGBoost models specifically for the
task of detecting and classifying key compromise attacks
within 10T network traffic. We utilize the comprehensive
and realistic CIC-ToN-loT dataset, examining model
performance in both binary (normal vs. attack) and multi-
class classification contexts to mirror real-world
operational scenarios [6].
The primary contributions of this research are:
= A comprehensive empirical assessment comparing
modern deep learning (ConvlD, AE) and ensemble
machine learning (RF, XGBoost) techniques applied to
a large-scale, contemporary 10T security dataset.
= An evaluation of model effectiveness under varying
data distributions, considering both balanced and
imbalanced scenarios inherent in security datasets.
= Validation of model robustness using established
techniques, including k-fold cross-validation, noise
perturbation analysis, and label randomization tests.
= A detailed analysis of model inference latency,
providing critical insights into the practical feasibility
of deploying these detection systems in time-sensitive,
real-time environments like SDN-enabled Fog
networks.

The subsequent sections of this paper are organized as
follows: Section 2 reviews related work on machine and
deep learning approaches for intrusion and key compromise
attack detection in loT and Fog computing environments.
Section 3 details the SDN-based Fog of Things network
topology relevant to this study. Section 4 describes the
characteristics of the CIC-ToN-loT dataset and the data
preprocessing steps undertaken. Section 5 elaborates on the
various training models. Section 6 explains the validation
strategies employed for the evaluated models. Section 7
presents and discusses the experimental results in detail.
Section 8 introduces comparative evaluation with State-of-
the-Art Approaches. Finally, Section 9,10 provides
concluding remarks and outlines potential directions for
future research.

2. RELATED WORK

Intrusion Detection Systems (IDS) in loT and Industrial 10T
(I1oT) environments have garnered significant attention due
to the increased frequency of cyber threats targeting
resource-constrained devices. Multiple studies have
explored deep learning and ensemble machine learning
techniques to address the limitations of traditional IDS
models in detecting sophisticated attacks.

Arslan et al. (2024) proposed a lightweight 1D
Convolutional Neural Network (1D-CNN) architecture
designed specifically for 1loT environments, achieving
99.9% accuracy across nine attack classes [7]. Their model
demonstrated real-time applicability and low computational
overhead, validating the effectiveness of CNNs in scenarios
where minimal latency is crucial.

In the context of autoencoder-based anomaly detection,
Torabi et al. (2023) presented a practical autoencoder
architecture that utilized vector reconstruction error rather
than a single scalar error [8]. Their approach allowed more
precise detection of subtle anomalies across individual
features, thereby reducing false positives. Similarly,
another work by Elhoseny and colleagues highlighted the
enhancement of autoencoder-based 1DSs using feature
selection techniques, leading to reduced dimensionality and
improved detection rates [9]. These findings motivated our
use of autoencoders as a baseline anomaly detection
technique.

Ensemble learning methods have also been widely studied.
A notable study by Alasad. proposed a hybrid IDS
combining CNN for feature extraction and XGBoost for
classification, resulting in high detection accuracy and
robustness [10]. Likewise, ensemble models—such as RF
and XGBoost—have been validated in recent literature for
their balance of interpretability, accuracy, and resistance to
overfitting in intrusion detection tasks [11][12].
Knowledge distillation and deep metric learning were also
utilized in Wang et al work on lightweight IDSs for cyber-
physical systems, offering a balance between accuracy and
model efficiency [13].

Finally, comprehensive reviews, such as the one by
Kikissaghe and Adda. (2024), provide an overview of
machine learning-based IDSs in loT environments and
highlight the continued need for models that are both
accurate and computationally feasible [14]. Our work
contributes to this ongoing effort by benchmarking the
performance of multiple models (ConvlD, Autoencoder,
RF, XGBoost) on a large-scale CIC-ToN-loT dataset,
focusing on realistic and critical key compromise attacks.
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3. SDN-BASED FOG OF THINGS (FOT) NETWORK
TOPOLOGY

The architecture underpinning this research integrates SDN
principles with the Fog of Things (FoT) paradigm to create
a flexible, manageable, and responsive network
infrastructure suitable for modern 10T deployments.
Understanding this topology is crucial for contextualizing
the security challenges and the proposed detection
mechanisms. An SDN-based FoT network typically
comprises multiple layers, each serving distinct functions.

At the lowest layer reside the loT devices themselves —
sensors, actuators, smart appliances, and other connected
endpoints. These devices are responsible for generating
data, interacting with the physical environment, and often
operate under significant resource constraints (CPU,
memory, power). They form the edge of the network, where
data originates and actions are often executed.

Above the 10T device layer sits the Fog layer. This layer
consists of geographically distributed fog nodes, which are
intermediate computing devices (e.g., routers, gateways,
micro-servers) positioned closer to the 10T devices than
centralized cloud servers. The Fog layer provides localized
computation, storage, and networking capabilities. Its
primary role is to reduce latency for time-sensitive
applications, decrease bandwidth consumption towards the
core network and cloud, and enhance scalability by
processing data closer to its source. Fog nodes can perform
initial data aggregation, filtering, and analysis, making the
overall system more efficient.

The core innovation in this architecture is the integration of
SDN. SDN fundamentally decouples the network's control
plane (which makes decisions about where traffic is sent)
from the data plane (which forwards traffic based on those
decisions). In an SDN-FoT topology, a centralized SDN
controller manages the network infrastructure, including
the switches and routers connecting loT devices, fog nodes,
and potentially the cloud. This controller possesses a global
view of the network state, enabling intelligent traffic
engineering, dynamic resource allocation, and centralized
policy enforcement. Communication between the controller
and the data plane devices typically occurs via standardized
protocols (e.g., OpenFlow). This centralized control
simplifies network management, enhances flexibility, and
allows for rapid deployment of new services and security
policies.

Optionally, a Cloud layer may exist at the top, providing
centralized, high-capacity storage, intensive computational
resources for complex analytics (and long-term data
archiving.

This layered, SDN-enabled architecture offers significant
advantages for 10T security. The centralized SDN controller
acts as a strategic point for deploying intrusion detection

systems, like the ones evaluated in this paper. By
monitoring traffic flows managed by the controller,
anomalies and attacks can be detected early, and mitigation
actions (e.g., isolating compromised devices, triggering
rekeying mechanisms) can be orchestrated efficiently
across the network. The Fog layer itself can host
lightweight detection agents or enforce policies pushed
down by the controller, enabling distributed security
enforcement closer to the potential threats. This hierarchical
structure, combining centralized intelligence with
distributed enforcement, is key to securing the complex and
dynamic FoT environment.

4. DATASET AND PREPROCESSING

This research utilizes the CIC-ToN-loT dataset [15], a
contemporary and comprehensive benchmark specifically
designed for evaluating intrusion detection systems in loT
and lloT network environments. Its relevance stems from
the inclusion of diverse data sources, including network
traffic telemetry (NetFlow) and operating system logs,
captured from a realistic, medium-scale 10T testbed. The
dataset encompasses a substantial volume of records (over
5 million instances) and features (85 initial attributes)
representing both normal operational traffic and a wide
spectrum of modern cyberattacks. Crucially for this study,
it includes specific categories relevant to key compromise
scenarios, such as backdoor attacks, data injection,
password guessing attempts, and ransomware, making it an
ideal choice for assessing the proposed detection models.
To prepare the dataset for effective model training and
evaluation, a rigorous preprocessing pipeline was
implemented. Initially, non-informative metadata columns,
such as flow identifiers, source/destination IP addresses,
and timestamps, were removed as they do not typically
contribute directly to attack pattern recognition and can
introduce noise or bias. Subsequently, the dataset was
meticulously cleaned by addressing missing or invalid
entries. Rows containing NaN (Not a Number) or infinite
values were identified and removed to ensure data integrity.
Given the vast scale of the dataset, removing these
relatively few problematic rows were deemed preferable to
imputation, which could potentially introduce artificial
patterns.

Feature scaling is a critical step for many machine learning
algorithms, particularly neural networks and distance-based
methods. Therefore, the numerical features in the dataset
were scaled using Min-Max normalization, transforming
each feature to a range between 0 and 1. This prevents
features  with  larger  numerical ranges from
disproportionately influencing the model's learning
process. Following scaling, feature standardization was
applied to ensure a zero mean and unit variance, further
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optimizing the data for algorithms sensitive to feature
distributions. Additionally, features exhibiting low variance
or constant values across the dataset were filtered out, as
these provide minimal discriminatory information for
classification tasks. This resulted in a refined, informative
feature set optimized for model training[16].

Finally, the dataset was split into training and testing
subsets. To ensure that the class distributions (proportions
of normal traffic and different attack types) were
representative in both sets, stratified sampling was
employed. This is particularly important for security
datasets, which are often inherently imbalanced. For the
ConvlD models, the input data required reshaping into a
format suitable for one-dimensional convolutions, typically
involving structuring the features for each instance as a
sequence.

5. METHODOLOGY AND MODELS

Our methodology employs a two-stage approach to detect
and classify compromised key attacks. The first stage
involves binary anomaly detection to differentiate between
normal network traffic and potentially malicious flows. The
second stage performs multi-class classification on the
identified anomalous traffic to pinpoint the specific type of
key compromise attack. We evaluated four distinct models
within this framework: ConvlD, Autoencoder (AE),
Random Forest (RF), and XGBoost (XGB).

5.1. Convolutional Neural Network (Conv1D)
Recognizing the sequential nature of network traffic data,
we designed two separate ConvlD models tailored for the
binary and multi-class tasks.

Binary ConvlD: This model was architected for anomaly
detection. It features a sequence of one-dimensional
convolutional layers, each followed by a Rectified Linear
Unit (ReLU) activation function to introduce non-linearity
and max-pooling layers to reduce dimensionality and
extract dominant features. The convolutional layers learn
hierarchical spatial features from the input sequence
(representing network flow features). These layers are
followed by fully connected (dense) layers that integrate the
learned features. The final output layer uses a sigmoid
activation function, producing a probability score between
0 and 1, indicating the likelihood of the input being
anomalous. The model was trained using the Adam
optimizer and binary cross-entropy loss function, suitable
for binary classification tasks.

Multi-Class Conv1D: This model was designed to classify
the specific type of attack among the identified anomalies.
Similar to the binary model, it utilizes stacked
convolutional layers with ReLU activations and max-
pooling. To mitigate overfitting, dropout layers were

incorporated, randomly setting a fraction of neuron
activations to zero during training, thus promoting model
generalization. The final dense layer employs a softmax
activation function, outputting a probability distribution
across the different attack classes (backdoor, injection,
password, ransomware, plus the normal class for
completeness in some evaluations). Training employed the
Adam optimizer with categorical cross-entropy loss,
appropriate for multi-class classification. Early stopping
was implemented as a regularization technique, monitoring
validation loss and halting training when performance on
the validation set ceased to improve, preventing overfitting
to the training data.

5.2. Autoencoder (AE)

An Autoencoder was implemented as an unsupervised
approach primarily for binary anomaly detection. The AE
consists of two main components: an encoder and a
decoder. The encoder maps the high-dimensional input data
to a lower-dimensional latent representation (bottleneck
layer), capturing the essential characteristics of the data.
The decoder then attempts to reconstruct the original input
data from this latent representation. The AE was trained
exclusively on normal network traffic data. The underlying
principle is that the AE will learn to reconstruct normal
patterns effectively, resulting in low reconstruction errors.
However, when presented with anomalous data (attacks),
which deviates significantly from the learned normal
patterns, the reconstruction error will be substantially
higher. An anomaly score is calculated based on this
reconstruction error (e.g., Mean Squared Error). A
threshold, determined empirically from the Receiver
Operating Characteristic (ROC) curve analysis on a
validation set (optimizing the trade-off between true
positives and false positives), is used to classify instances
as normal or anomalous based on their reconstruction error.

5.3. Random Forest (RF)

As a representative ensemble learning method, a Random
Forest classifier was implemented. RF operates by
constructing a multitude of decision trees during training.
For classification, each tree in the forest votes for a class,
and the final prediction is determined by the majority vote.
Key hyperparameters were carefully tuned: the number of
trees (n_estimators) was set to 50, providing a balance
between performance and computational cost. The
maximum depth of each tree (max_depth) was limited to 15
to prevent overfitting and control model complexity. The
number of features considered when splitting a node
(max_features) was set to the square root of the total
number of features, a common heuristic that promotes
diversity among the trees. RF is known for its robustness to
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overfitting and its ability to handle high-dimensional data
effectively.

5.4. Extreme Gradient Boosting (XGBoost)

XGBoost, another powerful gradient boosting algorithm,
was also evaluated. XGBoost builds trees sequentially, with
each new tree attempting to correct the errors made by the
previous ones. It incorporates regularization techniques to
prevent overfitting and employs optimizations for speed
and performance. For this study, the XGBoost classifier
was configured with 50 boosting rounds (n_estimators).
The maximum depth of the trees (max_depth) was set to 10,
and the learning rate was set to 0.1, controlling the
contribution of each tree. The objective function was set to
multi:softmax for multi-class classification tasks, requiring
the specification of the number of classes. XGBoost is often
lauded for its high accuracy and efficiency.

5.5. Evaluation Metrics

The performance of all models was rigorously evaluated
using standard classification metrics:

Accuracy: The overall proportion of correctly classified
instances.

Precision: The proportion of correctly identified True
Positive (TP) instances (attacks) out of all instances True
Positive and False Positive (FP) as in equation 1.

Precision = TP / (TP + FP) 1)
Recall (Sensitivity or True Positive Rate): As calculated
using equation 2 represents the proportion of actual positive
instances (attacks) that were correctly identified from all TP
and False Negatives (FN).
Recall = TP/ (TP + FN) 2
F1-Score: The harmonic mean of precision and recall,
providing a balanced measure as in equation 3.

F1 = 2 x (Precision * Recall) / (Precision + Recall)  (3)

False Positive Rate (FPR): The proportion of negative
instances (normal traffic) incorrectly classified as positive.
False Negative Rate (FNR): The proportion of positive
instances (attacks) incorrectly classified as negative.
ROC-AUC: The Area Under the Receiver Operating
Characteristic Curve, measuring the model's ability to
distinguish between classes across different thresholds.
These metrics were calculated for both binary anomaly
detection and multi-class classification tasks, using the held-
out test set, ensuring a comprehensive assessment of each

model's capabilities in the context of detecting compromised
key attacks.

Table 1 summarizes the types, key strengths, and limitations
of ConvlD, AE, RF, and XGBoost in the context of intrusion

and anomaly detection.

TABLE 1. Comparative Summary of Machine Learning and

Deep Learning Models Used for Key Attack Detection

Model Type Key Strengths Limitations
Great for | Needs
ConviD [Deep Learning sequentl_al data, | reshaped |_nput,
automatic longer training
feature learning | time
Ideal for .
Unsupervised aieoa:nal ’ Sensitive o
AE P _y design, hard to
DL detection, no interoret
labels needed P
L ffectiv
Ensemble Robust,  fast, ess  effective
RF (Bagging) interpretable for — sequence
gaing p data
Ensemble High accqra_cy, Cor_nplex
XGBoost . handles missing | tuning, slower
(Boosting) ..
values well training

6. VALIDATION STRATEGY

Ensuring the reliability of the developed intrusion detection
models in security-critical SDN-FoT networks, a multi-
faceted validation strategy was employed for the primary
models: the ConvlD multi-class classifier and the
Autoencoder for binary anomaly detection.

For the ConvlD multi-class model, three key validation
techniques were applied:

Robustness to Input Perturbations: Real-world network data
is often noisy due to environmental factors or potentially
manipulated by adversaries. To simulate these conditions,
Gaussian noise with varying standard deviations (¢ = 0.01,
0.10, 0.50, and 1.00) was systematically injected into the
features of the test dataset. The model's performance
(accuracy, F1-score, etc.) was then re-evaluated on this noisy
data. Consistent performance across different noise levels
indicates the model's resilience and ability to generalize
beyond the clean training data.

Label Shuffling (Permutation Test): To confirm that the
model learned genuine patterns correlating features with
attack types, rather than memorizing the training data, a label
shuffling test was conducted. The class labels of the test set
were randomly permuted, effectively breaking any true
relationship between features and labels. A well-trained
model should exhibit performance close to random chance on
this shuffled data preventing data leakage or overfitting.
K-Fold Cross-Validation: To assess performance consistency
across different subsets of the data and mitigate potential bias
from a single train-test split, 3-fold cross-validation was
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performed during the model development phase. The data
was divided into three folds; the model was trained on two
folds and validated on the remaining fold, rotating the
validation fold three times. Averaging the performance
metrics across the folds provides a more robust estimate of
the model's generalization capability [17]. Crucially, strict
separation between training, validation, and the final test set
was maintained throughout the process to prevent any form
of data leakage.

For the AE model, validation focused on its anomaly
detection capability: Optimal Threshold Determination: The
effectiveness of the AE hinges on selecting an appropriate
threshold for the reconstruction error to distinguish
anomalies from normal data. This threshold was determined
using the ROC curve generated on a separate validation set
(distinct from the final test set). The optimal threshold was
chosen as the point on the ROC curve that maximized the
difference between the True Positive Rate (Recall) and the
False Positive Rate (TPR - FPR), representing a balanced
trade-off between detecting attacks and minimizing false
alarms.

K-Fold Cross-Validation: Similar to the ConvlD model, 3-
fold cross-validation was applied during the AE's training
phase (using only normal data) to evaluate the stability and
generalizability of its reconstruction capability across
different data partitions.

These comprehensive validation procedures collectively
bolster confidence in the reported performance metrics and
the suitability of the models for deployment in dynamic and
potentially adversarial SDN-FoT environments.

7. RESULTS AND DISCUSSION

The experimental evaluation rigorously assessed the
performance of the ConvlD, Autoencoder (AE), Random
Forest (RF), and XGBoost (XGB) models in detecting and
classifying compromised key attacks within the CIC-ToN-
loT dataset. The evaluation followed the two-stage
framework: initial binary anomaly detection followed by
multi-class classification of identified anomalies.

7.1. Binary Anomaly Detection Performance
In the first stage, the models were tasked with the
fundamental challenge of distinguishing normal network

traffic from any anomalous flow. The performance metrics
provide clear insights into each model's effectiveness in this
binary classification scenario as shown in Table 2.

The ConvlD model emerged as the top performer, achieving
an exceptional accuracy of 99.16%. More critically, it
demonstrated a high precision of 98.26% and an outstanding
recall of 99.97%, culminating in an F1-score of 99.11%. The
extremely low False Negative Rate (FNR) of 0.03% is
particularly noteworthy in a security context, as it signifies
that the model missed very few actual attacks. While
minimizing missed attacks is crucial, the False Positive Rate
(FPR) of 1.55% indicates a reasonably low level of false
alarms, where normal traffic is incorrectly flagged as
malicious. This balance is vital for practical deployment to
avoid overwhelming security analysts with spurious alerts.
The Autoencoder (AE), operating unsupervised based on
reconstruction error, achieved a respectable accuracy of
97.31%. However, its performance was characterized by a
higher FPR (4.63%) and a higher FNR (0.97%) compared to
the supervised models. This suggests that while the AE
effectively learns the patterns of normal traffic, the
thresholding mechanism required to distinguish anomalies
leads to a less precise separation, resulting in more false
alarms and a slightly higher number of missed attacks
compared to ConvlD.

The ensemble learning models, Random Forest (RF) and
XGBoost (XGB), delivered strong and highly competitive
results. Both achieved accuracy levels around 99% (RF:
99.00%, XGB: 99.38%). XGBoost slightly edged out RF and
even ConvlD in terms of accuracy, precision (99.50%),
recall (99.50%), F1-score (99.20%), and achieved the lowest
FPR (1.00%) and a very low FNR (0.50%). The high ROC
AUC scores for both RF and XGB (near 0.9998) further
confirm their excellent discriminative capabilities in this
binary task. Their performance underscores the power of
ensemble methods in handling tabular data effectively.
Comparing the models, while XGBoost showed marginally
better metrics in the binary task, ConvlD's extremely low
FNR (0.03%) makes it highly compelling for scenarios where
minimizing missed threats is the absolute priority.

As illustrated in Fig. 1, the ConviD model demonstrates
excellent classification performance, with a near-perfect
ROC curve and a confusion matrix reflecting high accuracy,
low false positive rate, and minimal misclassifications
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TABLE2. Comparison of Binary Classification Performance Metrics for AE, ConvlD, Random Forest, and
XGBoost Models on the CIC-ToN-1oT Dataset.

Metric (AE) ConvlD (RF) XGBoost
Accuracy 0.9731 0.9916 0.9900 0.9938
Precision 0.9602 0.9826 0.9800 0.9950
Recall 0.9903 0.9997 0.9900 0.9950
F1-Score 0.9750 0.9911 0.9850 0.9920
False Positive Rate (FPR) 0.0463 0.0155 0.0140 0.0100
False Negative Rate (FNR) 0.0097 0.0003 0.0100 0.0050

ROC Curve - Conv1D on Unbalanced Test Set

08

o
o

True Positive Rate

°
=

True Label

Actual 0
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Confusion Matrix -

Conv1D on Unbalanced Test Set

1424

’ Conv1D ROC curve (area = 0.9956)

0.0

Predicted 0 Predicted 1

0.0 02 04 06 [X:] 10
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Figure 1: ROC Curve and Confusion Matrix of the Conv1D Model for Binary Anomaly Detection on the CIC-ToN-loT Dataset

TABLE 3. Performance Comparison of evaluated Models for Multi-Class Classification of Key Compromise Attacks
Metric (RF) (XGB) ConvlD
Accuracy 0.74 0.78 0.9998
Macro F1-Score 0.85 0.85 .999
Backdoor Precision 1.00 1.00 1.00
Backdoor Recall 1.00 1.00 0.96
Injection Precision 0.85 0.89 1.00
Injection Recall 0.49 0.55 1.00
Password Precision 0.69 0.72 1.00
Password Recall 0.93 0.95 1.00
Ransomware Precision 0.99 0.98 1.00
Ransomware Recall 0.99 0.99 1.00
Table 4. Comparative Analysis of Intrusion Detection Approaches
Feature Our Approach (ConvID) CNN-Based A.pproach F L-Base.d Approach
[Seyedkolaei et al.] [Talpini et al.]

DLModel ConvlD CNN Federated Learning (FL)

Dataset CIC-ToN-IoT DNN-EdgelloT CIC-ToN-IoT

Attack Focus Key compromise attacks | General attacks General attacks

Binary  Classification  F1- | 99.11% 100% ~99% (with clustering)

Multi-class Accuracy 99.98% 99.4% (6-class) Not directly comparable

False Negative Rate (FNR) 0.03% Not reported Not reported

Computational Paradigm Centralized Centralized Distributed

Key Strength Very low FNR Hi{%h accuracy  across | Privacy preservation
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7.2. Multi-Class Classification Performance

The second stage focused on classifying the identified
anomalies into specific key compromise attack types
(backdoor, injection, password, ransomware) along with the
normal class. This finer-grained classification is crucial for
understanding the nature of the threat and initiating
appropriate response actions.

In this more challenging multi-class scenario, the ConvlD
model demonstrated truly exceptional performance,
achieving an overall accuracy of 99.98%. Analysis of the
confusion matrix revealed near-perfect classification across
all categories, including the individual attack types.
Precision, recall, and F1-scores for each class were
consistently high, indicating that the model not only achieved
high overall accuracy but also effectively distinguished
between the different, often subtly distinct, attack patterns.
The FNR remained extremely low across all attack classes,
reinforcing its reliability.

The Random Forest and XGBoost models, while performing
well, did not reach the same level of near-perfection as the
ConvlD in the multi-class task. Although their overall
accuracies were still high, the confusion matrices showed
slightly higher instances of misclassification between certain
attack types compared to ConvlD. This suggests that while
ensemble methods are powerful, the Conv1D's ability to learn
intricate feature representations directly from the sequential
data provided an edge in differentiating between the specific
signatures of the various key compromise attacks.

The Autoencoder is inherently an anomaly detection method
and not directly suited for multi-class classification of attack
types without significant modification Therefore, its results
are primarily relevant to the binary detection stage.

Table 3 presents a comparative evaluation of Random Forest
(RF), XGBoost (XGB), and Conv1D models for multi-class
classification of key compromise attacks, showing the
superior performance of ConvlD in the multi-class setting
with the convolutional filters effectively act as learnable
pattern detectors, becoming specialized in identifying the
signatures associated with attacks.

7.3. Validation And Robustness

The validation tests further solidified the credibility of the
results, particularly for the ConvlD model. Performance
remained remarkably stable even when significant Gaussian
noise (up to 6=0.50) was added to the test data, demonstrating
robustness to input perturbations. The label shuffling tests
confirmed that the model's high accuracy was due to learning
genuine patterns, as performance dropped to near-random
levels when labels were permuted. Consistent results across
the 3-fold cross-validation indicated good generalization and
low sensitivity to specific data splits.

7.4. Inference Latency

Practical deployment in SDN-FoT environments demands
low inference latency. Measurements revealed that all models
exhibited relatively fast prediction times on the test set. While
deep learning models like ConvlD can sometimes have
higher latency than simpler models, optimizations and the
specific architecture used resulted in inference times suitable
for near real-time detection within the fog layer or at the SDN
controller, supporting their feasibility for operational
deployment.

8. COMPARATIVE EVALUATION WITH STATE-OF-
THE-ART APPROACHES

This section presents a comparative evaluation of our
Convl1D-based approach with two recent methodologies in
loT network security: a CNN-based multiclass classification
model by Abdi Seyedkolaei et al. (2025) and a clustering-
enhanced federated learning (FL) method by Talpini et al.
(2023).

8.1 Comparison With CNN-Based Multiclass
Classification

The study by Abdi Seyedkolaei et al [18], utilized a CNN
architecture to classify various attack types across multiple
IoT/lloT datasets. While both approaches employ
convolutional models, our Conv1D architecture is optimized
for detecting key compromise attacks in SDN-Fog-loT
networks using a two-stage detection pipeline—binary
anomaly detection followed by multi-class classification. In
contrast, their model targets a broader range of attacks using
direct multiclass classification. Performance-wise, both
models achieved high F1-scores, with our method attaining
99.11% in binary classification and 99.98% accuracy in
multiclass classification. A key strength of our approach is
the exceptionally low false negative rate (0.03%), which is
critical for reliable anomaly detection.

8.2 Comparison with Clustering-Enhanced Federated
Learning

Talpini et al [19]. proposed a distributed learning strategy
leveraging clustering to improve FL performance and address
data heterogeneity. Although both approaches use the CIC-
ToN-loT dataset, their model focuses on preserving privacy
through decentralization, whereas ours emphasizes
centralized intelligence within the SDN controller. Their
clustering-enhanced FL achieved an approximate F1-score of
99% in binary classification. However, a direct comparison
with our model is limited due to differences in evaluation
strategy and architectural design.
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8.3 Summary and Implications

Table 4 summarizes the key distinctions between the three
methods, highlighting our approach's advantages in
classification accuracy and false negative reduction. The
performance comparison shown in Fig. 2 further underscores
these metrics. A future research direction could explore
integrating the strengths of these methodologies, such as
implementing hierarchical intrusion detection systems where
lightweight FL models operate at the edge and robust
ConvaD classifiers at fog nodes or controllers. This hybrid
strategy could offer a balance between detection accuracy,
scalability, and privacy preservation.
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Fig2.Performance Comparison of Intrusion Detection Approaches.

9. CONCLUSION

This research conducted an in-depth comparative analysis of
deep learning and ensemble machine learning models for
detecting compromised key attacks in SDN-enabled Fog-loT
networks, using the realistic CIC-ToN-loT dataset. The
ConvlD neural network consistently outperformed other
models, especially in multi-class classification, where it
achieved 99.98% accuracy and strong precision, recall, and
F1-scores across all attack types. In binary classification,
ConvlD achieved the lowest false negative rate (0.03%),
which is critical in preventing missed detections of security
threats. The study highlighted the effectiveness of the SDN-
FoT architecture in enabling efficient and scalable intrusion
detection. The Conv1D model demonstrated high robustness,
validated through noise injection, label permutation, and k-
fold cross-validation tests. Overall, the results confirm that
ConvlD is a highly suitable model for analyzing network
attacks in SDN-controlled fog networks.

10. FUTURE WORK

Future research directions include exploring hybrid models
that combine the strengths of different approaches, such as
using ConvlD for feature extraction followed by an ensemble
classifier. Investigating the application of attention
mechanisms within the ConvlD architecture could further

enhance its ability to focus on the most salient features for
attack detection.

Additionally, research into federated learning approaches
could enable collaborative model training across distributed
fog nodes without centralizing raw sensitive data, enhancing
privacy and scalability.
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