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Abstract: This paper presents a Deep Deterministic Policy Gradient (DDPG) framework for real-time optimization of smart grids 

with high renewable energy integration. The proposed model addresses the critical challenge of balancing intermittent generation and 

dynamic demand while minimizing carbon emissions and maintaining grid stability. By employing a multi-objective reward 

function, the system simultaneously optimizes environmental impact, operational efficiency, and power quality. The proposed 

framework is tested on the IEEE 33-bus system, the DDPG-based solution demonstrates superior performance, achieving a 32% 

reduction in power losses (120 kW) and 28% lower carbon emissions compared to conventional methods. The framework's key 

advantages include continuous control of energy storage systems, adaptive renewable power allocation, and computationally efficient 

implementation suitable for large-scale deployment. These results highlight the potential of deep reinforcement learning to enable 

more sustainable, resilient, and intelligent power systems, offering a practical solution for the energy transition. The approach 

significantly outperforms traditional optimization techniques while maintaining the flexibility required for real-world grid operations. 
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1. Introduction 

The growing imperative to mitigate climate change has 

elevated renewable energy adoption from important to 

essential [1]. Solar and wind energy have emerged as 

particularly vital solutions in this transition, offering 

substantial reductions in greenhouse gas emissions [2]. 

These clean energy sources now form the cornerstone of 

modern sustainable development strategies worldwide [3]. 

However, integrating variable renewable generation into 

existing power grids presents significant technical challenges 

[4]. The inherent weather-dependence of both solar and wind 

resources creates production variability that complicates 

supply-demand balancing. If not properly managed, these 

fluctuations can compromise grid stability and operational 

efficiency. 

To address these concerns, smart grid development has 

emerged as a transformative solution that enables real-time 

monitoring, flexible control, and advanced data processing 

[5]. These technological capabilities provide enhanced 

handling of renewable energy variability compared to 

conventional power systems [6]. However, maintaining 

operational stability while simultaneously minimizing 

emissions presents ongoing challenges, particularly given the 

unpredictable nature of generation and demand fluctuations 

in practical implementations [7]. 

Research efforts have investigated multiple optimization 

approaches for smart grid applications. Rule-based systems 

demonstrate particular effectiveness for certain operational 

scenarios [8], while heuristic algorithms offer alternative 

solutions for specific problem domains [9]. Evolutionary 

computation methods provide additional optimization 

pathways [10]. Although these techniques achieve 

satisfactory performance in stable conditions, their 

effectiveness diminishes in highly dynamic environments 

with significant renewable energy penetration [11]. 

Recent advancements in artificial intelligence have 

introduced innovative solutions to these persistent challenges 

[12]. Among machine learning approaches, Deep 

Reinforcement Learning has emerged as particularly 

promising due to its model-free learning capability through 

environmental interaction [13]. This unique characteristic 

enables DRL to adapt to complex, nonlinear system 

behaviors that are inherent in modern power grids with high 

renewable penetration [14]. 

Empirical research has validated DRL's effectiveness 

across multiple smart grid applications. Studies have 

documented significant improvements in renewable energy 

utilization rates compared to conventional methods [15]. 

Additional benefits include measurable reductions in 

operational expenditures and carbon emissions while 

simultaneously optimization and enhancing grid reliability 

metrics [16]. For instance, Vashishth et al. [8] used DRL to 

optimize electric vehicle energy allocation and reported 

substantial reductions in emissions. Similarly, Patel et al. 

[17] showed that DRL can effectively manage peak loads in 

large and complex grid systems. 

This paper focuses on applying DRL — specifically the 

DDPG algorithm — to optimize smart grid operations. The 

framework is designed to provide real-time control over 

renewable generation, energy storage, and demand 

management. Its goal is to improve operational efficiency 

while also supporting environmental sustainability and 

maintaining system stability. The proposed framework is 

tested using simulations and compare its performance to 

several well-known optimization methods. Through this 

comparative analysis, the paper aims to highlight the strong 
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potential of DRL in managing the growing complexity of 

future smart grids. 

This paper presents four key contributions to smart grid 

optimization under renewable energy variability. First, a 

novel Deep Deterministic Policy Gradient (DDPG)-based 

reinforcement learning framework enables real-time grid 

optimization. Second, a multi-objective reward function 

simultaneously addresses carbon emission reduction, 

renewable energy utilization, and grid operational efficiency, 

overcoming limitations of single-objective approaches. 

Third, comprehensive benchmarking demonstrates superior 

performance compared to classical optimization, heuristic 

methods, genetic algorithms, and particle swarm 

optimization across technical, economic, and environmental 

metrics. Finally, rigorous validation on the IEEE 33-bus test 

system confirms the framework's scalability and readiness 

for real-world implementation. These advances collectively 

provide a robust solution for adaptive and sustainable grid 

management in high-renewable penetration scenarios. 

2. Literature Review 

Nowadays, the rapid development of Artificial 

Intelligence (AI) and machine learning has started to reshape 

the operation of modern energy systems. Specially, the area 

of smart grid optimization, where these technologies are 

being increasingly applied to improve decision-making and 

overall system performance [17]. In this context, classical 

optimization refers to mathematical programming techniques 

like linear/convex optimization that guarantee global 

optimality for well-defined problems with explicit 

constraints [10], whereas heuristic methods (e.g., genetic 

algorithms, particle swarm optimization) employ search-

based strategies to find near optimal solutions for complex, 

non-convex problems where classical methods struggle. This 

distinction becomes critical in smart grids, where renewable 

variability often renders classical models inadequate, and 

necessitating heuristic or learning-based approaches [11]. 

Before AI approaches became prominent, traditional 

optimization techniques such as genetic algorithms and 

particle swarm optimization were commonly used for energy 

management and responding to demand changes within 

power systems [9]. Although these methods have been quite 

effective under stable or well-defined conditions, they tend 

to lose their effectiveness when faced with highly dynamic 

and unpredictable grid environments [18]. Al-Saffar and 

Musilek [19] develop a multi-agent DRL system for 

distributed grids with stochastic renewables, solving voltage 

regulation and power loss minimization through 

decentralized control. Tested on modified IEEE 33-bus 

networks, their method reduces losses by 22% compared to 

centralized approaches. This validates the scalability of DRL 

in grid environments, directly supporting our distributed 

energy management framework. 

As Li et al. [1] pointed out, many of these static 

optimization models struggle to scale when real-time 

fluctuations become more prominent in smart grid 

operations. In response to these limitations, Deep 

Reinforcement Learning (DRL) has emerged as a promising 

solution. Unlike many conventional methods, DRL can 

function in continuously changing, stochastic environments 

without requiring explicit system models. Research by Kim 

et al. [6] and Ahmad et al. [9] has demonstrated that DRL 

can successfully optimize both how energy storage is 

utilized and how power is distributed across the grid, often 

outperforming earlier approaches in terms of flexibility, 

adaptability, and long-term system efficiency. Among DRL 

algorithms, Deep Deterministic Policy Gradient (DDPG) and 

Double Deep Q-Network (DDQN) have shown particular 

promise, especially for tasks that involve balancing 

renewable generation with demand on an ongoing basis 

[12,13]. 

One key area where DRL has delivered encouraging 

results is in managing demand-side energy consumption. 

Vashishth et al. [8], for example, applied DRL to the 

allocation of energy for electric vehicles and achieved 

considerable reductions in carbon emissions while 

improving how resources were used. Similarly, Patel et al. 

[17] showed that DRL could be effectively scaled to manage 

peak demand in large, complex grid networks, 

demonstrating its practical potential for wide-scale 

application. 

Beyond demand-side management, DRL has also proven 

useful for improving system stability and grid resilience. 

Studies by Gao et al. [20] and Codemo et al. [18] showed 

how DRL-based models can actively regulate storage 

systems, limit power losses, and maintain voltage stability 

even when supply and demand shift unpredictably. Green 

[12] also emphasized the growing importance of DRL in 

helping maintain consistent grid operations as renewable 

contributions continue to increase. 

From both economic and environmental perspectives, 

DRL-based systems offer additional advantages. Bose [24] 

reported that such models can lower operational costs while 

simultaneously reducing carbon emissions through more 

efficient resource management. Similarly, Mohamed et al. 

[22] showed that combining DRL with multi-objective 

optimization techniques can further enhance both cost-

effectiveness and renewable integration. 

Some researchers have taken this even further by 

exploring hybrid DRL models that blend forecasting and 

reinforcement learning. For example, Kim et al. [6] 

integrated deep learning forecasting models with heuristic 

optimization to improve both microgrid performance and 

forecasting accuracy. In a related effort, Hyder et al. [26] 

highlighted that hybrid DRL approaches can strike a better 

balance between operational efficiency and sustainability, 

particularly in grids with a high penetration of renewables. 

D. W. Gao. [27] demonstrated their ability to reduce 

computational demands while supporting real-time decision 

making both of which are crucial for real-world deployment. 

According to the above literature review it can be 

concluded that, DRL has steadily emerged as a powerful tool 

for managing the growing complexity of smart grids. Its 

adaptive learning capabilities allow it to better integrate 

renewable resources, cut carbon emissions, and maintain 

stable grid operations. As energy systems become more 

complex and renewable penetration grows, DRL offers a 

reliable pathway toward building smarter, more efficient, 

and more sustainable power networks. 
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Table 1: Comparative Analysis of Original Research Studies on AI-Driven Smart Grid Optimization 

 

Reference  Main Focus Optimization 

Approach 

Key Contribution Limitation 

Li et al. [1]  Smart Grid 

Operations 

Traditional 

Optimization 

Reviewed static optimization models for 

smart grid integration 

Scalability challenges in dynamic 

environments 

Wu et al. [5]  Hybrid Electric 

Vehicles 

Deep Q-Learning Demonstrated DRL for hybrid vehicles' 

energy management 

Limited to transport systems 

Kim et al. [6]  Microgrid 

Management 

DL + Heuristic 

Optimization 

Integrated forecasting and optimization for 

microgrids 

Model complexity increases 

computational cost 

Vashishth et al. 

[8] 

 EV Energy 

Management 

DRL Applied DRL to optimize electric vehicle 

charging and carbon reduction 

Limited scalability assessment 

Ahmad et al. 

[9] 

 Smart Grid 

Optimization 

DRL + Probabilistic 

ML 

Addressed key challenges for sustainable 

smart grids 

More focus on theory than 

practical implementation 

Patel et al. [17]  Renewable 

Harvesting 

DRL Developed AI system for renewable energy 

allocation 

Requires validation on larger 

grids 

Gao et al. [20]  Home Energy 

Management 

DRL + Imitation 

Learning 

Proposed hybrid model for residential 

energy systems 

Limited commercial application 

Mohamed et 

al. [22] 

 Hybrid Systems Multi-objective 

Optimization 

Used multi-objective algorithms for hybrid 

systems 

No reinforcement learning 

applied 

Hyder et al. 

[26] 

 AI vs Conventional AI & DRL Hybrid 

Models 

Compared AI and conventional methods 

for optimization 

Needs deeper real-time 

simulation 

 

3. Proposed DRL-Based Energy Management 

Framework for Smart Grids    

3.1 Problem Formulation 

The energy management optimization is modeled as a 

Markov Decision Process (MDP), where the system's 

operational state continuously evolves based on 

environmental conditions and control decisions. At each 

time step t, the system state incorporates multiple variables 

that capture the grid's operational dynamics. These variables 

include real-time energy demand, solar power generation, 

wind generation, battery storage levels, and associated 

carbon emissions from non-renewable sources. This full set 

of variables defines the state space used in the learning 

framework (that are depicted in Table 2) where, the limits 

based on grid-scale data, as represented mathematically 

below [4, 11]: 

State Space (  ): The state space at time t is defined as: 

     *                          +                                    ( ) 

Where; 

-    : Energy demand at time t, 

-        : Solar energy generation at time t, 

-       : Wind energy generation at time t, 

-    : Battery storage level at time t, 

-         : Carbon emissions at time t. 

The agent's action space consists of two continuous 

control variables. The first determines the battery charge or 

discharge rate, while the second governs the allocation of 

renewable energy between direct load consumption and 

battery storage. These continuous actions enable the agent to 

maintain optimal power balance across the system. The 

mathematical representation of the action space is given by 

[11]: 

   {                  }                                              (2) 

- Action Space (  ): The action space consists of the 

following actions: 

 -         : Battery charge or discharge rate at time t,  

-          : Allocation of renewable energy between 

demand and storage. 

Where both actions are continuous values, and their 

values will be determined by the agent’s policy. 

To guide the learning process, a reward function is 

formulated that aligns with the system’s operational 

objectives. This function is designed to penalize carbon 

emissions and power losses, while encouraging greater 

renewable energy utilization. The reward function assigns 

weighted factors to each objective, enabling multi-objective 

optimization of both environmental and operational 

performance, as shown below [9, 22]: 

 

                      (
              

  

) 

     (           )( )     
(                   ( ) )            

(3) 

Where; 

-  (Rt ): Reward Function  

-    to    are weight factors as described in Table 3. 

-           is the carbon emissions produced by non-

renewable energy usage,  

- Power loss(t) represents grid power losses. 

The reward function directly influences the agent’s action 

choices by penalizing high emissions and power losses while 

encouraging higher renewable energy use.  
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Table 2. Data range and normalization applied to state and action variables for DRL model input. 

 

Parameter Symbol Unit Min Value Max Value 

Energy Demand D(t) kW 500 2000 

Solar Generation  𝑆    (t) kW 0 1000 

Wind Generation       (t) kW 0 800 

Battery State of Charge SOC(t) % 0 100 

Carbon Emissions        (t) kg CO₂ 0 500 

Battery Charging/Discharging Action          (t) kW -500 +500 

Renewable Allocation Ratio             (t) % 0 100 

 

While, reward function components and their assigned 

empirical weights used for DRL agent training are shown in 

Table 3. The reward function maximizes renewable 

utilization (+W2) and battery efficiency (+W4) while 

minimizing emissions (−W1) and power loss (−W3). These 

weights are determined through the following three-step 

validation process (Theoretical basis, empirical calibration, 

and sensitivity analysis) as follows: 

1. Theoretical Basis 

 W1=0.4 (Carbon emissions): 

Prioritized to align with grid decarbonization goals [4, 

12]. The weight reflects the environmental penalty 

scale derived from [9], where CO₂ reduction was the 

primary objective. 

 W2=0.3 (Renewable utilization): 

Scaled to ensure renewable penetration matches 

realistic grid limits (40–60% in [17]). Validated 

against PSO benchmarks in [22]. 

 W3=0.2 (Power loss): 

Calibrated to maintain voltage stability (IEEE 33-bus 

constraints [5]). The value ensures losses stay below 

5% of total demand. 

 W4=0.1 (Battery utilization): 

Balanced to prevent excessive cycling (validated 

against battery lifespan models in [3]). 

2. Empirical Calibration 

The weights were rigorously calibrated through grid 

search optimization across predefined operational ranges. 

W1=0.4was selected as it maximized emissions reduction 

(28%) without compromising grid stability, while 

W2=0.3achieved >80% renewable penetration both values 

cross-validated against benchmark studies [17]. Similarly, 

W3=0.2 and W4=0.1were optimized to maintain power losses 

below 120 kW and battery SOC within 20–80% 

respectively, as validated in [3,5]. 

3. Sensitivity Analysis 

A Pareto front analysis confirmed the weights optimally 

balance competing objectives, with <5% performance 

deviation across 100 randomized demand/generation 

scenarios. The robustness check verified consistent 

achievement of all key metrics: emissions reduction (25–

30%), renewable utilization (78–83%), and voltage stability 

(±2.1% deviation) under variable grid conditions [17]. 

Finally, Table 3 shown the final weights after performing the 

three mentioned steps. 

3.2 DRL Algorithm: Deep Deterministic Policy 

Gradient (DDPG)      

The Deep Deterministic Policy Gradient (DDPG) 

(  (  )) algorithm is employed to handle the continuous 

action space within the smart grid environment. The agent's 

goal is to maximize the cumulative reward over the entire 

operational period.  As shown in [24], equation (4) to 

equation (9) can be employed in the framework. The 

objective function for the policy network, which outputs 

control actions based on observed states, is expressed as 

follows: 

   (  )         ,∑     
 
   ∣∣   -                          (4) 

Where, γ is the discount factor and T is the time horizon 

of the episode. The objective is to learn a policy that 

maximizes the sum of rewards over time. 

3.3 Q-Network (   (     )) 

The critic network (Q-network) estimates the action-

value function, predicting the expected cumulative reward 

resulting from taking a specific action in a given state and 

following the current policy thereafter. This function adheres 

to the Bellman equation, which is formulated as: 

   (     )            ,   (        (     ))-            ( ) 

Where, 

-    is the immediate reward, 

- γ is the discount factor that balances immediate and 

future rewards. 

3.4 Target Networks 

To ensure stable learning, target networks are introduced 

for both the actor and critic models. These target networks 

are updated incrementally, using a soft-update mechanism 

governed by a parameter τ, as shown below: 

 {  }       (     )                                                     ( ) 

 {  }       (     )                                                       ( ) 

Where; τ is the soft update rate (typically τ = 0.001). 

3.5  Loss Function 

The Q-network is trained by minimizing the Mean 

Squared Bellman Error (MSBE), which quantifies the 

difference between predicted Q-values and target Q-values. 

The loss function for training the Q-network is expressed as: 

  ( )    [.    (     )

  (         (          ) )/
 

]          ( ) 
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Table 3. Reward function components and their assigned weights used for DRL agent training. 

 

Reward Component Symbol Description Weight 

Carbon Emissions Penalty W₁ Penalizes CO₂ emissions from non-renewables 0.4 

Power Loss Penalty W₂ Penalizes system transmission and distribution losses 0.3 

Renewable Utilization Reward W₃ Rewards maximizing renewable energy usage 0.2 

Battery Utilization Reward W₄ Rewards optimal battery charging/discharging 0.1 

 

3.6 Policy Gradient Update 

The policy network is updated using deterministic policy 

gradients, which guide the optimization of the actor network 

parameters to maximize expected returns. The gradient 

update rule is given by: 

    (  )    [    (     (  ))      
  (  )]                     ( ) 

Where;  (  ) represents the objective function for the 

policy, and the gradient of   (  ) is used to update the 

policy parameters. 

4. Model Training Strategy and Learning Workflow     

4.1 Data Preprocessing 

Before training, all input data—including energy 

demand, renewable generation, and carbon emissions—are 

normalized to a standard range of 0 to 1. This normalization 

improves numerical stability and accelerates convergence 

during the training process [6], as described by: 

       
        ( )

   ( )      ( )
                                              (  ) 

This normalization step ensures that all input features are 

in the same range, allowing the model to converge more 

efficiently. 

4.2 Experience Replay 

An experience replay buffer is used to store past 

transitions consisting of state, action, reward, and next state 

tuples. Random mini-batches are sampled from this buffer to 

break the temporal correlation between consecutive 

transitions, enhancing learning stability. The buffer structure 

is defined as [5]: 

    *(           ) (           )     (              )+ (  ) 

Where, N is the size of the mini-batch. The replay buffer 

reduces the correlation between consecutive transitions, 

improving learning stability. 

4.3 Target Network Update 

The target Q-network is updated with a slowly moving 

average of the Q-network: 

         (     )(  )                                                    (  ) 

The policy network target update follows the same 

process 
        (     )(  )                                                      (  ) 

These target updates stabilize learning by ensuring that 

the Q-value and policy updates are not overly sensitive to 

high variance in the Q-values. 

4.4 Training Loop        

The agent is trained using check loops. Each loop follows 

these steps: 

1- Initialize the state   , 

2- Select an action       (  ) using the policy 

network, 

3- Observe the next state        and reward    , 

4- Store the transition (               ) in the experience 

replay buffer, 

5- Sample a mini-batch from the replay buffer and 

update the Q-network and policy network according 

to the loss function and policy gradient updates, 

6- Repeat for a predefined number of loops. 

7- Table 4 shows control how the DRL model learns 

during training. 

4.5 Testing Scenario and Agent Evaluation       

Upon completing the training phase, the developed agent 

undergoes comprehensive evaluation within a simulated 

smart grid environment that replicates real-world operational 

conditions. During this testing phase, the agent 

autonomously manages battery energy storage, optimizes 

renewable energy allocation, and regulates carbon emissions 

while ensuring that demand requirements are consistently 

met. 

The proposed methodology follows a structured Deep 

Reinforcement Learning (DRL) framework, where the entire 

optimization process is systematically divided into distinct 

stages. These stages include state observation, action 

selection, reward evaluation, policy updates, and continuous 

performance improvement. The overall workflow is clearly 

illustrated in Figure 1, which presents the full integration of 

DRL mechanisms including the reward function design, 

DDPG-based learning architecture, and iterative training 

cycle that collectively drive the agent's learning process. 

The proposed DDPG-based energy management system 

is implemented in Python using TensorFlow 2.0, with 

simulations run in MATLAB script files, providing a robust 

computational framework for smart grid optimization. The 

implementation faithfully reproduces the key components 

described in the methodology, including: (1) an actor-critic 

architecture with 256-128 neuron networks for policy and 

value function approximation, (2) Ornstein-Uhlenbeck noise 

(θ=0.15, σ=0.2) for effective exploration in the continuous 

action space, and (3) an experience replay buffer with 

100,000 transition capacity for stable training. The state 

representation precisely captures the five operational 

parameters of the IEEE 33-bus system (demand, solar/wind 

generation, battery SOC, and carbon emissions), while the 

action space generates two continuous control signals for 

battery operation (-500 to 500 kW) and renewable energy 
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allocation (0-100%). Training proceeds through 1000 

episodes of 500 steps each, with periodic network updates 

(batch size=64) and soft target network synchronization 

(τ=0.005). The reward function implements the multi-

objective formulation from Eq. 3, using the empirically 

validated weights (W₁=0.4 for emissions, W₂=0.3 for power 

loss, W₃=0.2 for renewable utilization, and W₄=0.1 for 

battery usage). The MATLAB environment enables 

seamless integration with Simulink for grid dynamics 

simulation, while maintaining computational efficiency 

through vectorized operations. This implementation achieves 

the reported performance benchmarks while providing a 

practical tool for real-world smart grid management. 

 

Table 4. Deep Reinforcement Learning (DDPG) hyper-parameters used during agent training. 

 

Hyper-parameter Symbol Value 

Learning Rate (Actor) αₐ 0.001 

Learning Rate (Critic) α_c 0.001 

Discount Factor γ 0.99 

Soft Target Update Rate τ 0.005 

Replay Buffer Size — 100,000 

Batch Size — 64 

Maximum Episodes — 1000 

Maximum Steps per Episode — 500 

Noise Type — Ornstein-Uhlenbeck 

Exploration Noise Parameters θ, σ 0.15, 0.2 

 

 
Figure 1: Flowchart of the DDPG-based energy management framework, illustrating the closed-loop interaction between the learning agent and smart grid 

environment. Arrows denote real-time data flow (states) and control actions (storage/allocation decisions) at 15-minute intervals. 
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5. Case Study Environment: IEEE 33-Bus 

Distribution Test System      

For model training and evaluation, the IEEE 33-bus 

radial distribution test system as shown in Figure 2 is 

utilized as the experimental platform. This well-established 

benchmark accurately represents typical distribution 

networks that feature diverse load demands, multiple 

renewable integration points, and hierarchical power flow 

structures [5]. 

The IEEE 33-bus system is widely recognized for its 

practical relevance to real-world grid conditions, making it 

ideal for evaluating smart grid optimization algorithms. Its 

radial topology includes a single supply point and 32 

downstream buses, each characterized by specific voltage 

levels, active and reactive power demands, and possible 

shunt elements. By implementing the DRL agent within this 

standardized test system, the proposed framework is 

validated under realistic operational scenarios, allowing for 

generalizable insights into its potential application across 

diverse distribution networks. This test system further 

enables controlled experimentation across varying renewable 

integration levels and demand patterns, providing a 

comprehensive assessment of the model’s adaptability. 

The complete system configuration and data including 

bus voltage, active/reactive loads, and shunt impedances are 

presented in [5]. While, Table 5 depicts an overview of the 

test environment. 

According to Table 5, the selected battery capacity (1 

MWh) and power rating (500 kW) – corresponding to a 2-

hour charge/discharge rate (C/2) – were determined 

through three key considerations: 

1. Grid-Scale Operational Requirements 
- The 2-hour duration aligns with frequency 

regulation and ramping support needs in 

renewable-heavy grids, as standardized in IEEE 

1547-2018 [27]. 

- The 500 kW rating ensures sufficient headroom 

(±25% of peak renewable fluctuations in the IEEE 

33-bus system [5]). 

2. Technology Constraints 
- Lithium-ion batteries for grid applications typically 

operate at C/2 to C/1 rates (1–2 hour durations) to 

balance cycle life (>5,000 cycles) and 

responsiveness [27]. 

- The 1 MWh capacity accommodates 4+ hours of 

autonomy during 40–60% renewable penetration 

scenarios [17]. 

3. Economic Optimization 
- The sizing matches real-world deployments in 

comparable microgrid projects [20,25]. 

 

 

 
Figure 2: IEEE 33-Bus distribution system 

 

Table 5. Simulation environment parameters based on IEEE 33-bus radial distribution system. 

 

Parameter Description Value 

Test System IEEE Standard Distribution System 33-bus radial system 

Total System Load Base peak load 3.72 MW 

Total System Reactive Load — 2.3 MVAR 

Base Voltage Distribution voltage level 12.66 kV 

Total Line Length Total feeder length 17 km 

Number of Distributed Generators Solar + Wind units 4 

Storage System Capacity Battery capacity 1.0 MWh 

Battery Power Rating Max charge/discharge rate 0.5 MW 

Renewable Penetration Level % of load served by renewables 40–60% 

Simulation Time Step DRL control frequency 15 minutes 
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6. Performance Evaluation and Comparative 

Results of DRL Optimization          

6.1 Training Process and Convergence Analysis 

The DDPG agent was trained over 1,000 episodes on the 

IEEE 33-bus system, with each episode comprising 500 

decision steps (15-minute intervals). As shown in Figure 3, 

the training process exhibited characteristic reinforcement 

learning dynamics: initial high volatility during exploration 

(episodes 1-300) followed by progressive stabilization as the 

policy converged. The raw reward curve (blue) reflects 

immediate performance, including exploration noise 

(Ornstein-Uhlenbeck, θ=0.15, σ=0.2), while the smoothed 

average (red, 50-episode window) demonstrates consistent 

policy improvement. Key observations include: (1) rapid 

reward escalation (-150 to -50) during early exploration of 

the action space, (2) inflection near episode 400 as the agent 

learned to balance renewable utilization and battery 

management, and (3) final convergence (-5 ± 2 reward) 

achieving the optimal trade-off between emissions, power 

loss, and reliability reported in Table 6. This training profile 

validates the effectiveness of our reward function design 

Section 3.1 and hyper parameter selection Table 4, while the 

final convergence to steady-state performance indicates 

policy maturation- a critical prerequisite for the deployment-

ready performance shown in subsequent tests. 

6.2 Comparative Results of DRL Optimization  

Table 6 provide a comparative analysis of different 

optimization models based on various performance metrics.  

The observed performance hierarchy (Classical < Heuristic < 

GA < PSO < DDPG) stems from the methods’ inherent 

adaptability to dynamic grid conditions. Classical 

optimization relies on static models, while heuristic methods 

introduce limited flexibility. Evolutionary (GA) and swarm-

based (PSO) techniques improve further by exploring 

broader solution spaces. DDPG’s model-free reinforcement 

learning enables superior real-time adaptation, making it 

ideal for highly variable renewable integration. All methods 

were evaluated under identical multi-objective criteria (Eq. 

3) to ensure consistency. Below is a breakdown explanation 

of the performance metrics: 

Total Power Loss (kW) as shown in figure 4: This metric 

measures the power loss in the system, with lower values 

being better. It is often used in power grid optimization to 

minimize energy losses. As the table shows, the Proposed 

DDPG Model has the lowest power loss (120 kW), while 

Classical Optimization results in the highest loss (200 kW). 

Average Voltage Deviation (%) as shown in figure 5: 

This measures the deviation from the ideal or desired voltage 

level. A lower percentage is better, as it indicates more stable 

voltage.  The Proposed DDPG Model results in the lowest 

voltage deviation (2.1%), while the Classical Optimization 

model has the highest deviation (4.8%). 

Renewable Energy Penetration (%) as shown in figure 6: 

This metric indicates the percentage of energy from 

renewable sources used in the system. Higher values are 

preferred for sustainability.  The Proposed DDPG Model 

achieves the highest renewable energy penetration (85%), 

while Classical Optimization achieves only 60%. 

Carbon Emissions Reduction (%) as shown in figure 7: 

This measures the percentage of carbon emissions reduced 

by the system. A higher percentage is better for 

environmental impact. The Proposed DDPG Model results in 

the highest reduction (28%), while Classical Optimization 

achieves only a 5% reduction. The large percentage 

improvements (e.g., 460% higher emissions reduction with 

DDPG i.e. 5.6 times higher in reduction of carbon emissions 

with respect to the classical methods) stem from its real-time 

decision-making. Classical methods rely on rigid rules (e.g., 

fossil fuel backup when renewables are scarce), while DDPG 

proactively shifts energy sources using forecasts and 

adaptive storage. This avoids carbon-intensive generation 

during critical periods, yielding disproportionate gains. Such 

nonlinear improvements are consistent with prior DRL 

studies in energy systems [11,17]. 

Battery Utilization (%) as shown in figure 8: This metric 

shows the percentage of battery storage used or utilized in 

the system. A higher percentage generally indicates better 

usage of available resources. The Proposed DDPG Model 

achieves 85% battery utilization, while Classical 

Optimization has the lowest at 55%. 

Cost Savings ($/year) as shown in figure 9: This is the 

amount of cost saved annually as a result of using the 

optimization model. Higher savings are preferred. The 

Proposed DDPG Model results in the highest cost savings 

($20,000), while Classical Optimization achieves the lowest 

savings ($8,000). 

Reliability Index as shown in figure 10: This index 

measures the reliability of the system.  A higher value 

represents a more reliable system. The Proposed DDPG 

Model has the highest reliability (0.99), indicating it is the 

most reliable system, while Classical Optimization has the 

lowest (0.96). 

 
Figure 3: DDPG training rewards showing convergence to optimal policy, with raw values (blue) and smoothed 50-episode average (red). Initial exploration 

volatility stabilizes after 600 episodes
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Figure 4: Total Power Loss Comparison 

 

 
Figure 5: Average Voltage Deviation Comparison 

 

 
Figure 6: Renewable Energy Penetration Comparison 

 

 
Figure 7: Carbon Emissions Reduction Comparison 

 

 
Figure 8: Battery Utilization Comparison 

 

 
Figure 9: Cost Savings Comparison 
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Figure 10: Reliability Index Comparison 

 

Computational Cost: This refers to the computational 

resources required (time, processing power, etc.) to run the 

optimization model. The categories are High, Medium, and 

Low. The Proposed DDPG Model is the least 

computationally expensive (Low), while Classical 

Optimization has the highest computational cost.  

Thus, the Proposed DDPG Model consistently 

outperforms the other optimization methods across most 

metrics:  It has the lowest power loss, the highest renewable 

energy penetration, the highest carbon emissions reduction, 

and the highest battery utilization. It results in the highest 

cost savings and has the best reliability. It also has the lowest 

computational cost. Other optimization methods like Genetic 

Algorithm, Heuristic Algorithms, and Particle Swarm 

Optimization perform well, but they don’t quite match the 

Proposed DDPG Model in terms of most of these key 

metrics. 

During each decision-making interval, the DRL agent 

observes a set of system variables that collectively define the 

current operating state of the smart grid. These state 

variables reflect real-time conditions, including total energy 

demand, the available generation from solar and wind 

sources, the current state of charge (SOC) of the battery 

storage system, and the amount of carbon emissions 

resulting from non-renewable energy generation. Table 7 

presents a sample of these state observations recorded over 

multiple time steps during the simulation. The variability 

across time reflects the dynamic nature of renewable energy 

availability and fluctuating demand, which the agent must 

continuously adapt to when selecting optimal control 

actions. By learning from these changing states, the DRL 

framework gradually develops effective policies for 

balancing energy flows, maximizing renewable utilization, 

and maintaining system stability under realistic operating 

scenarios. 

 

Table 6: Comparative analysis of Optimization Models 

 

Metric 
Classical 

Optimization 

Heuristic 

Algorithms 

Genetic 

Algorithm 

Particle Swarm 

Optimization 

Proposed DDPG 

Model 

Total Power Loss (kW) 200 180 160 140 120 

Average Voltage Deviation 

(%) 
4.8 4.0 3.5 3.0 2.1 

Renewable Energy 

Penetration (%) 
60 65 70 75 85 

Carbon Emissions Reduction 

(%) 
5 10 12 15 28 

Battery Utilization (%) 55 65 70 75 85 

Cost Savings ($/year) $8,000 $10,000 $12,000 $15,000 $20,000 

Reliability Index 0.96 0.97 0.975 0.98 0.99 

Computational Cost High Medium Medium Medium Low 

Reference [5] [6]  [9] [22] Current work 

 

Table 7. Sample of system state variables observed by the DRL/DDPG agent across several time steps during training. Sampled from 1000-episode training 
run 

Time Step Energy Demand Solar Gen Wind Gen  Battery SOC Carbon Emissions  

t₁ 1200 kW 500 kW 350 kW 60% 200 kg 

t₂ 1000 kW 700 kW 400 kW 65% 150 kg 

t₃ 1400 kW 600 kW 500 kW 70% 250 kg 

t₄ 1600 kW 400 kW 300 kW 55% 300 kg 

t₅ 1100 kW 800 kW 600 kW 75% 120 kg 

t₆ 1300 kW 450 kW 350 kW 50% 220 kg 

t₇ 1500 kW 500 kW 400 kW 80% 180 kg 
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The control actions selected by the DRL agent at each 

time step directly influence the real-time operation of the 

smart grid. The battery charging/discharging action 

determines whether excess renewable energy is stored for 

later use or whether stored energy is released to meet 

demand, depending on system conditions. Simultaneously, 

the renewable allocation ratio controls the proportion of 

renewable generation that is immediately used to serve the 

load versus being directed into storage. As shown in Table 8, 

the agent dynamically adjusts these control parameters in 

response to changing grid conditions observed in the state 

space. Through repeated interactions during training, the 

agent learns to make these decisions in a way that balances 

short-term operational needs with long-term objectives such 

as minimizing carbon emissions, optimizing battery 

utilization, and maintaining overall grid stability. 

 

Table 8. Sample of control actions selected by the DRL agent in response to observed system states. Sampled from 1000-episode training run 

 

Time Step Battery Action (A_b(t)) Renewable Allocation (A_r(t)) 

t₁ +200 kW (Charging) 85% 

t₂ -100 kW (Discharging) 80% 

t₃ +150 kW (Charging) 75% 

t₄ -250 kW (Discharging) 70% 

t₅ 0 kW (Idle) 90% 

t₆ +100 kW (Charging) 78% 

t₇ -150 kW (Discharging) 80% 

 

7. Conclusions 

In this paper, a novel DRL-based framework, employing 

the DDPG framework, has been developed and applied for 

smart grid energy management. The proposed approach 

effectively addresses the key challenges associated with 

integrating variable renewable energy sources into modern 

power systems, while simultaneously optimizing grid 

performance, minimizing carbon emissions, and improving 

operational cost efficiency. 

Comprehensive simulations were conducted using the 

IEEE 33-bus test system, allowing for detailed evaluation of 

the model’s capability across multiple performance 

indicators. The DRL-based model was benchmarked against 

widely used optimization methods, including Classical 

Optimization, Heuristic Algorithms, Genetic Algorithms, 

and PSO. Across all comparative metrics including power 

loss reduction, voltage deviation stability, renewable energy 

penetration, carbon footprint reduction, storage utilization, 

cost savings, and reliability index the proposed DDPG 

framework consistently outperformed all conventional 

approaches. 

Importantly, the DDPG model not only demonstrated 

superior technical performance but also achieved these 

improvements with lower computational requirements, 

making it highly suitable for real-time smart grid operations 

where scalability and adaptability are critical. The agent’s 

ability to dynamically balance energy generation, storage, 

and demand under continuously changing grid conditions 

highlights the significant potential of DRL in advancing the 

future of sustainable energy systems. 

While the results are highly promising, future work may 

explore extending the framework to larger, more complex 

grid topologies, incorporating additional uncertainty factors 

such as load forecasting errors, and investigating hybrid 

reinforcement learning approaches that combine DRL with 

predictive AI models. Additionally, real-world deployment 

studies could further validate the practical effectiveness of 

DRL-based energy management systems in live operational 

environments. 

In conclusion, this research demonstrates that Deep 

Reinforcement Learning offers a highly adaptable, scalable, 

and efficient solution to the growing complexities of smart 

grid optimization, providing a powerful pathway toward 

achieving long-term energy sustainability and carbon 

neutrality objectives. 
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