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Abstract: This paper presents a Deep Deterministic Policy Gradient (DDPG) framework for real-time optimization of smart grids
with high renewable energy integration. The proposed model addresses the critical challenge of balancing intermittent generation and
dynamic demand while minimizing carbon emissions and maintaining grid stability. By employing a multi-objective reward
function, the system simultaneously optimizes environmental impact, operational efficiency, and power quality. The proposed
framework is tested on the IEEE 33-bus system, the DDPG-based solution demonstrates superior performance, achieving a 32%
reduction in power losses (120 kW) and 28% lower carbon emissions compared to conventional methods. The framework's key
advantages include continuous control of energy storage systems, adaptive renewable power allocation, and computationally efficient
implementation suitable for large-scale deployment. These results highlight the potential of deep reinforcement learning to enable
more sustainable, resilient, and intelligent power systems, offering a practical solution for the energy transition. The approach
significantly outperforms traditional optimization techniques while maintaining the flexibility required for real-world grid operations.

Keywords: Smart Grid Optimization, Deep Reinforcement Learning (DRL), Renewable Energy Integration, Carbon Emissions
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1. Introduction

The growing imperative to mitigate climate change has
elevated renewable energy adoption from important to
essential [1]. Solar and wind energy have emerged as
particularly vital solutions in this transition, offering
substantial reductions in greenhouse gas emissions [2].
These clean energy sources now form the cornerstone of
modern sustainable development strategies worldwide [3].

However, integrating variable renewable generation into
existing power grids presents significant technical challenges
[4]. The inherent weather-dependence of both solar and wind
resources creates production variability that complicates
supply-demand balancing. If not properly managed, these
fluctuations can compromise grid stability and operational
efficiency.

To address these concerns, smart grid development has
emerged as a transformative solution that enables real-time
monitoring, flexible control, and advanced data processing
[5]. These technological capabilities provide enhanced
handling of renewable energy variability compared to
conventional power systems [6]. However, maintaining
operational stability while simultaneously minimizing
emissions presents ongoing challenges, particularly given the
unpredictable nature of generation and demand fluctuations
in practical implementations [7].

Research efforts have investigated multiple optimization
approaches for smart grid applications. Rule-based systems
demonstrate particular effectiveness for certain operational
scenarios [8], while heuristic algorithms offer alternative
solutions for specific problem domains [9]. Evolutionary
computation methods provide additional optimization
pathways [10]. Although these techniques achieve

satisfactory performance in stable conditions, their
effectiveness diminishes in highly dynamic environments
with significant renewable energy penetration [11].

Recent advancements in artificial intelligence have
introduced innovative solutions to these persistent challenges
[12]. Among machine learning approaches, Deep
Reinforcement Learning has emerged as particularly
promising due to its model-free learning capability through
environmental interaction [13]. This unique characteristic
enables DRL to adapt to complex, nonlinear system
behaviors that are inherent in modern power grids with high
renewable penetration [14].

Empirical research has validated DRL's effectiveness
across multiple smart grid applications. Studies have
documented significant improvements in renewable energy
utilization rates compared to conventional methods [15].
Additional benefits include measurable reductions in
operational expenditures and carbon emissions while
simultaneously optimization and enhancing grid reliability
metrics [16]. For instance, Vashishth et al. [8] used DRL to
optimize electric vehicle energy allocation and reported
substantial reductions in emissions. Similarly, Patel et al.
[17] showed that DRL can effectively manage peak loads in
large and complex grid systems.

This paper focuses on applying DRL — specifically the
DDPG algorithm — to optimize smart grid operations. The
framework is designed to provide real-time control over
renewable generation, energy storage, and demand
management. Its goal is to improve operational efficiency
while also supporting environmental sustainability and
maintaining system stability. The proposed framework is
tested using simulations and compare its performance to
several well-known optimization methods. Through this
comparative analysis, the paper aims to highlight the strong
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potential of DRL in managing the growing complexity of
future smart grids.

This paper presents four key contributions to smart grid
optimization under renewable energy variability. First, a
novel Deep Deterministic Policy Gradient (DDPG)-based
reinforcement learning framework enables real-time grid
optimization. Second, a multi-objective reward function
simultaneously addresses carbon emission reduction,
renewable energy utilization, and grid operational efficiency,
overcoming limitations of single-objective approaches.
Third, comprehensive benchmarking demonstrates superior
performance compared to classical optimization, heuristic
methods, genetic algorithms, and particle swarm
optimization across technical, economic, and environmental
metrics. Finally, rigorous validation on the IEEE 33-bus test
system confirms the framework's scalability and readiness
for real-world implementation. These advances collectively
provide a robust solution for adaptive and sustainable grid
management in high-renewable penetration scenarios.

2. Literature Review

Nowadays, the rapid development of Artificial
Intelligence (Al) and machine learning has started to reshape
the operation of modern energy systems. Specially, the area
of smart grid optimization, where these technologies are
being increasingly applied to improve decision-making and
overall system performance [17]. In this context, classical
optimization refers to mathematical programming techniques
like linear/convex optimization that guarantee global
optimality for well-defined problems with explicit
constraints [10], whereas heuristic methods (e.g., genetic
algorithms, particle swarm optimization) employ search-
based strategies to find near optimal solutions for complex,
non-convex problems where classical methods struggle. This
distinction becomes critical in smart grids, where renewable
variability often renders classical models inadequate, and
necessitating heuristic or learning-based approaches [11].
Before Al approaches became prominent, traditional
optimization techniques such as genetic algorithms and
particle swarm optimization were commonly used for energy
management and responding to demand changes within
power systems [9]. Although these methods have been quite
effective under stable or well-defined conditions, they tend
to lose their effectiveness when faced with highly dynamic
and unpredictable grid environments [18]. Al-Saffar and
Musilek [19] develop a multi-agent DRL system for
distributed grids with stochastic renewables, solving voltage
regulation and power loss minimization through
decentralized control. Tested on modified IEEE 33-bus
networks, their method reduces losses by 22% compared to
centralized approaches. This validates the scalability of DRL
in grid environments, directly supporting our distributed
energy management framework.

As Li et al. [1] pointed out, many of these static
optimization models struggle to scale when real-time
fluctuations become more prominent in smart grid
operations. In response to these limitations, Deep
Reinforcement Learning (DRL) has emerged as a promising
solution. Unlike many conventional methods, DRL can
function in continuously changing, stochastic environments

without requiring explicit system models. Research by Kim
et al. [6] and Ahmad et al. [9] has demonstrated that DRL
can successfully optimize both how energy storage is
utilized and how power is distributed across the grid, often
outperforming earlier approaches in terms of flexibility,
adaptability, and long-term system efficiency. Among DRL
algorithms, Deep Deterministic Policy Gradient (DDPG) and
Double Deep Q-Network (DDQN) have shown particular
promise, especially for tasks that involve balancing
renewable generation with demand on an ongoing basis
[12,13].

One key area where DRL has delivered encouraging
results is in managing demand-side energy consumption.
Vashishth et al. [8], for example, applied DRL to the
allocation of energy for electric vehicles and achieved
considerable reductions in carbon emissions while
improving how resources were used. Similarly, Patel et al.
[17] showed that DRL could be effectively scaled to manage
peak demand in large, complex grid networks,
demonstrating its practical potential for wide-scale
application.

Beyond demand-side management, DRL has also proven
useful for improving system stability and grid resilience.
Studies by Gao et al. [20] and Codemo et al. [18] showed
how DRL-based models can actively regulate storage
systems, limit power losses, and maintain voltage stability
even when supply and demand shift unpredictably. Green
[12] also emphasized the growing importance of DRL in
helping maintain consistent grid operations as renewable
contributions continue to increase.

From both economic and environmental perspectives,
DRL-based systems offer additional advantages. Bose [24]
reported that such models can lower operational costs while
simultaneously reducing carbon emissions through more
efficient resource management. Similarly, Mohamed et al.
[22] showed that combining DRL with multi-objective
optimization techniques can further enhance both cost-
effectiveness and renewable integration.

Some researchers have taken this even further by
exploring hybrid DRL models that blend forecasting and
reinforcement learning. For example, Kim et al. [6]
integrated deep learning forecasting models with heuristic
optimization to improve both microgrid performance and
forecasting accuracy. In a related effort, Hyder et al. [26]
highlighted that hybrid DRL approaches can strike a better
balance between operational efficiency and sustainability,
particularly in grids with a high penetration of renewables.

D. W. Gao. [27] demonstrated their ability to reduce
computational demands while supporting real-time decision
making both of which are crucial for real-world deployment.

According to the above literature review it can be
concluded that, DRL has steadily emerged as a powerful tool
for managing the growing complexity of smart grids. Its
adaptive learning capabilities allow it to better integrate
renewable resources, cut carbon emissions, and maintain
stable grid operations. As energy systems become more
complex and renewable penetration grows, DRL offers a
reliable pathway toward building smarter, more efficient,
and more sustainable power networks.
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Table 1: Comparative Analysis of Original Research Studies on Al-Driven Smart Grid Optimization

Reference Main Focus Optimization Key Contribution Limitation
Approach

Lietal. [1] Smart Grid Traditional Reviewed static optimization models for ~ Scalability challenges in dynamic
Operations Optimization smart grid integration environments

Wau et al. [5] Hybrid Electric Deep Q-Learning Demonstrated DRL for hybrid vehicles' Limited to transport systems
Vehicles energy management

Kimetal. [6] Microgrid DL + Heuristic Integrated forecasting and optimization for Model complexity increases
Management Optimization microgrids computational cost

Vashishth etal. EV Energy DRL Applied DRL to optimize electric vehicle Limited scalability assessment

[8] Management charging and carbon reduction

Ahmad et al. Smart Grid DRL + Probabilistic Addressed key challenges for sustainable  More focus on theory than

[9] Optimization ML smart grids practical implementation

Patel etal. [L7] Renewable DRL Developed Al system for renewable energy Requires validation on larger
Harvesting allocation grids

Gaoetal. [20] Home Energy DRL + Imitation Proposed hybrid model for residential Limited commercial application
Management Learning energy systems

Mohamed et Hybrid Systems Multi-objective Used multi-objective algorithms for hybrid No reinforcement learning

al. [22] Optimization systems applied

Hyder et al. Al vs Conventional Al & DRL Hybrid ~ Compared Al and conventional methods ~ Needs deeper real-time

[26] Models for optimization simulation

3. Proposed DRL-Based Energy Management
Framework for Smart Grids

3.1 Problem Formulation

The energy management optimization is modeled as a
Markov Decision Process (MDP), where the system's
operational state  continuously evolves based on
environmental conditions and control decisions. At each
time step t, the system state incorporates multiple variables
that capture the grid's operational dynamics. These variables
include real-time energy demand, solar power generation,
wind generation, battery storage levels, and associated
carbon emissions from non-renewable sources. This full set
of variables defines the state space used in the learning
framework (that are depicted in Table 2) where, the limits
based on grid-scale data, as represented mathematically
below [4, 11]:

State Space (S;): The state space at time t is defined as:

S¢ = {Dt' Gsotar» Gwina» Bt Ecarbon}

Where;

- D, : Energy demand at time t,

- Gso1ar - SOlar energy generation at time t,

- Gyina - Wind energy generation at time t,

- B, : Battery storage level at time t,

- Ecarvon - Carbon emissions at time t.

The agent's action space consists of two continuous
control variables. The first determines the battery charge or
discharge rate, while the second governs the allocation of
renewable energy between direct load consumption and
battery storage. These continuous actions enable the agent to
maintain optimal power balance across the system. The

€y

mathematical representation of the action space is given by
[11]:

Ay = {astorage' aallocate} (2)
- Action Space (A4;): The action space consists of the
following actions:

- Ggrorage- Battery charge or discharge rate at time t,

- Quuocate. Allocation of renewable energy between
demand and storage.

Where both actions are continuous values, and their
values will be determined by the agent’s policy.

To guide the learning process, a reward function is
formulated that aligns with the system’s operational
objectives. This function is designed to penalize carbon
emissions and power losses, while encouraging greater
renewable energy utilization. The reward function assigns
weighted factors to each objective, enabling multi-objective
optimization of both environmental and operational
performance, as shown below [9, 22]:

Gsolar + Gwind )
D,
— W; - (power loss )(t) + W, -
(battery utilization(t) )
®)

Ry = =Wy Ecgrpon + Wo (

Where;
- (Ry): Reward Function
- W; to W, are weight factors as described in Table 3.
- E.grbon 1S the carbon emissions produced by non-
renewable energy usage,
- Power loss(t) represents grid power losses.

The reward function directly influences the agent’s action
choices by penalizing high emissions and power losses while
encouraging higher renewable energy use.
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Table 2. Data range and normalization applied to state and action variables for DRL model input.

Parameter Symbol Unit Min Value Max Value
Energy Demand D(t) kw 500 2000

Solar Generation Gsorar() kw 0 1000

Wind Generation Gwina () kw 0 800
Battery State of Charge SOC(t) % 0 100

Carbon Emissions Ecarbon() kg CO: 0 500
Battery Charging/Discharging Action Astorage () kw -500 +500
Renewable Allocation Ratio Aaniocation (0 % 0 100

While, reward function components and their assigned
empirical weights used for DRL agent training are shown in
Table 3. The reward function maximizes renewable
utilization (+W,) and battery efficiency (+W,) while
minimizing emissions (—Wy) and power loss (—W3). These
weights are determined through the following three-step
validation process (Theoretical basis, empirical calibration,
and sensitivity analysis) as follows:

1. Theoretical Basis

o W;=04 (Carbon emissions):
Prioritized to align with grid decarbonization goals [4,
12]. The weight reflects the environmental penalty
scale derived from [9], where CO2 reduction was the
primary objective.

o W,=0.3 (Renewable utilization):
Scaled to ensure renewable penetration matches
realistic grid limits (40-60% in [17]). Validated
against PSO benchmarks in [22].

o W,=0.2 (Power loss):
Calibrated to maintain voltage stability (IEEE 33-bus
constraints [5]). The value ensures losses stay below
5% of total demand.

e W,=0.1 (Battery utilization):
Balanced to prevent excessive cycling (validated
against battery lifespan models in [3]).

2.  Empirical Calibration

The weights were rigorously calibrated through grid
search optimization across predefined operational ranges.
W,=0.4was selected as it maximized emissions reduction
(28%) without compromising grid stability, while
W,=0.3achieved >80% renewable penetration both values
cross-validated against benchmark studies [17]. Similarly,
W5=0.2 and W,=0.1were optimized to maintain power losses
below 120 kW and battery SOC within 20-80%
respectively, as validated in [3,5].

3. Sensitivity Analysis

A Pareto front analysis confirmed the weights optimally
balance competing objectives, with <5% performance
deviation across 100 randomized demand/generation
scenarios. The robustness check verified consistent
achievement of all key metrics: emissions reduction (25—
30%), renewable utilization (78-83%), and voltage stability
(£2.1% deviation) under variable grid conditions [17].
Finally, Table 3 shown the final weights after performing the
three mentioned steps.

3.2 DRL Algorithm: Deep Deterministic Policy
Gradient (DDPG)

The Deep Deterministic Policy Gradient (DDPG)
(mo(S,)) algorithm is employed to handle the continuous
action space within the smart grid environment. The agent's
goal is to maximize the cumulative reward over the entire
operational period. As shown in [24], equation (4) to
equation (9) can be employed in the framework. The
objective function for the policy network, which outputs
control actions based on observed states, is expressed as
follows:

g (s¢) = argmax E[ X_, ‘R, | 5o ] (4)

Where, v is the discount factor and T is the time horizon
of the episode. The objective is to learn a policy that
maximizes the sum of rewards over time.

3.3 Q-Network (Qg (sy ay))

The critic network (Q-network) estimates the action-
value function, predicting the expected cumulative reward
resulting from taking a specific action in a given state and
following the current policy thereafter. This function adheres
to the Bellman equation, which is formulated as:
Qe (spa) = Re+ v - E[QQ (S¢41, 7o (S¢41))]
Where,

- R is the immediate reward,

- v is the discount factor that balances immediate and
future rewards.

5)

3.4 Target Networks

To ensure stable learning, target networks are introduced
for both the actor and critic models. These target networks
are updated incrementally, using a soft-update mechanism
governed by a parameter t, as shown below:

Qe < 1Qp+ (1 — DQy
men < 1Qp + (1 — Dy
Where; 7 is the soft update rate (typically T = 0.001).

(6)
(7

3.5 Loss Function

The Q-network is trained by minimizing the Mean
Squared Bellman Error (MSBE), which quantifies the
difference between predicted Q-values and target Q-values.
The loss function for training the Q-network is expressed as:

L) = E|(es (00

- (Rt + vQy (St41) ry1) ))2] (8)
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Table 3. Reward function components and their assigned weights used for DRL agent training.

Reward Component Symbol Description Weight
Carbon Emissions Penalty W, Penalizes CO- emissions from non-renewables 0.4
Power Loss Penalty W; Penalizes system transmission and distribution losses 0.3
Renewable Utilization Reward W; Rewards maximizing renewable energy usage 0.2
Battery Utilization Reward W, Rewards optimal battery charging/discharging 0.1

3.6 Policy Gradient Update

The policy network is updated using deterministic policy
gradients, which guide the optimization of the actor network
parameters to maximize expected returns. The gradient
update rule is given by:

Vo J(0) = E[VsQ, (st mo(sp)) - Vi,ma(se)] C))

Where; J(60 ) represents the objective function for the
policy, and the gradient of my(s,)is used to update the
policy parameters.

4. Model Training Strategy and Learning Workflow

4.1 Data Preprocessing

Before training, all input data—including energy
demand, renewable generation, and carbon emissions—are
normalized to a standard range of 0 to 1. This normalization
improves numerical stability and accelerates convergence
during the training process [6], as described by:

x — min(x)

xnorm -

max(x) — min(x) (10)

This normalization step ensures that all input features are
in the same range, allowing the model to converge more
efficiently.

4.2 Experience Replay

An experience replay buffer is used to store past
transitions consisting of state, action, reward, and next state
tuples. Random mini-batches are sampled from this buffer to
break the temporal correlation between consecutive
transitions, enhancing learning stability. The buffer structure
is defined as [5]:

B = {(s1,a1,R1,52), (52,03, Ry, 53), ..., (Sn, @y, Ry, w41 )} (11)

Where, N is the size of the mini-batch. The replay buffer
reduces the correlation between consecutive transitions,
improving learning stability.

4.3 Target Network Update

The target Q-network is updated with a slowly moving
average of the Q-network:
¢ 1+ (1 - (@) (12)
The policy network target update follows the same
process
0" <16+ (1 — 1)(8") (13)
These target updates stabilize learning by ensuring that
the Q-value and policy updates are not overly sensitive to
high variance in the Q-values.

4.4 Training Loop
The agent is trained using check loops. Each loop follows
these steps:

1- Initialize the state S,

2- Select an action a; = mg(sy) using the policy
network,

3- Observe the next state s, ,; and reward R, ,

4-  Store the transition (s, a;, Ry, St 4+1 ) in the experience
replay buffer,

5- Sample a mini-batch from the replay buffer and
update the Q-network and policy network according
to the loss function and policy gradient updates,

6- Repeat for a predefined number of loops.

7- Table 4 shows control how the DRL model learns

during training.

4.5 Testing Scenario and Agent Evaluation

Upon completing the training phase, the developed agent
undergoes comprehensive evaluation within a simulated
smart grid environment that replicates real-world operational
conditions. During this testing phase, the agent
autonomously manages battery energy storage, optimizes
renewable energy allocation, and regulates carbon emissions
while ensuring that demand requirements are consistently
met.

The proposed methodology follows a structured Deep
Reinforcement Learning (DRL) framework, where the entire
optimization process is systematically divided into distinct
stages. These stages include state observation, action
selection, reward evaluation, policy updates, and continuous
performance improvement. The overall workflow is clearly
illustrated in Figure 1, which presents the full integration of
DRL mechanisms including the reward function design,
DDPG-based learning architecture, and iterative training
cycle that collectively drive the agent's learning process.

The proposed DDPG-based energy management system
is implemented in Python using TensorFlow 2.0, with
simulations run in MATLAB script files, providing a robust
computational framework for smart grid optimization. The
implementation faithfully reproduces the key components
described in the methodology, including: (1) an actor-critic
architecture with 256-128 neuron networks for policy and
value function approximation, (2) Ornstein-Uhlenbeck noise
(86=0.15, 0=0.2) for effective exploration in the continuous
action space, and (3) an experience replay buffer with
100,000 transition capacity for stable training. The state
representation precisely captures the five operational
parameters of the IEEE 33-bus system (demand, solar/wind
generation, battery SOC, and carbon emissions), while the
action space generates two continuous control signals for
battery operation (-500 to 500 kW) and renewable energy
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allocation (0-100%). Training proceeds through 1000
episodes of 500 steps each, with periodic network updates
(batch size=64) and soft target network synchronization
(=0.005). The reward function implements the multi-
objective formulation from Eq. 3, using the empirically
validated weights (W1=0.4 for emissions, W>=0.3 for power
loss, W3=0.2 for renewable utilization, and W.=0.1 for

battery usage). The MATLAB environment enables
seamless integration with Simulink for grid dynamics
simulation, while maintaining computational efficiency
through vectorized operations. This implementation achieves
the reported performance benchmarks while providing a
practical tool for real-world smart grid management.

Table 4. Deep Reinforcement Learning (DDPG) hyper-parameters used during agent training.

Hyper-parameter Symbol Value
Learning Rate (Actor) o 0.001
Learning Rate (Critic) ac 0.001
Discount Factor Y 0.99
Soft Target Update Rate T 0.005
Replay Buffer Size — 100,000
Batch Size — 64
Maximum Episodes — 1000
Maximum Steps per Episode — 500
Noise Type — Ornstein-Uhlenbeck
Exploration Noise Parameters 0,0 0.15,0.2
Start
!
Define State 5; and Aclion Space 4,
i
State SpaceS; = {D}, Gsotar, G wind, B4, Ecarbonf
+
Action Spaceds= {Buommg. Tatecats}
! .
Define Reward Function Ry
i
Bym = W1 Eipurpen + W2 (%} W3 - [pawer_loss)(6) & W4 Battery Utilization (€) /
+

Select DRL Algorithm: DDPG

!

Define Policy Metworkms (5)

+

Define Q-NetworkQ. (3, &)

Train until L
Corvergence? l
Update Target NetworksQaq — 1y + (1 — 7)y ; mggry — t0p + (1 — tlag
Yes l
Mirimize Loss Functicn L{g) :—:l[w {seag) = (R + ¥ (5pariBieay }}]'fl
Policy Gradient Update Fy f(# ) = E[Pa Qg5 malse)) - o, malsed]
: |
End

Figure 1: Flowchart of the DDPG-based energy management framework, illustrating the closed-loop interaction between the learning agent and smart grid
environment. Arrows denote real-time data flow (states) and control actions (storage/allocation decisions) at 15-minute intervals.
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5. Case Study Environment: IEEE 33-Bus
Distribution Test System

For model training and evaluation, the IEEE 33-bus
radial distribution test system as shown in Figure 2 is
utilized as the experimental platform. This well-established
benchmark accurately represents typical distribution
networks that feature diverse load demands, multiple
renewable integration points, and hierarchical power flow
structures [5].

The IEEE 33-bus system is widely recognized for its
practical relevance to real-world grid conditions, making it
ideal for evaluating smart grid optimization algorithms. Its
radial topology includes a single supply point and 32
downstream buses, each characterized by specific voltage
levels, active and reactive power demands, and possible
shunt elements. By implementing the DRL agent within this
standardized test system, the proposed framework is
validated under realistic operational scenarios, allowing for
generalizable insights into its potential application across
diverse distribution networks. This test system further
enables controlled experimentation across varying renewable
integration levels and demand patterns, providing a
comprehensive assessment of the model’s adaptability.

The complete system configuration and data including
bus voltage, active/reactive loads, and shunt impedances are

19 20 21 22

presented in [5]. While, Table 5 depicts an overview of the
test environment.

According to Table 5, the selected battery capacity (1
MWh) and power rating (500 kW) — corresponding to a 2-
hour charge/discharge rate (C/2) — were determined
through three key considerations:

1. Grid-Scale Operational Requirements

- The 2-hour duration aligns with frequency
regulation and ramping support needs in
renewable-heavy grids, as standardized in IEEE
1547-2018 [27].

- The 500 kW rating ensures sufficient headroom
(x25% of peak renewable fluctuations in the IEEE
33-bus system [5]).

2. Technology Constraints

- Lithium-ion batteries for grid applications typically
operate at C/2 to C/1 rates (1-2 hour durations) to
balance cycle life (5,000 cycles) and
responsiveness [27].

- The 1 MWh capacity accommodates 4+ hours of
autonomy during 40-60% renewable penetration
scenarios [17].

3. Economic Optimization

- The sizing matches real-world deployments in

comparable microgrid projects [20,25].
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Figure 2: IEEE 33-Bus distribution system

Table 5. Simulation environment parameters based on IEEE 33-bus radial distribution system.

Parameter Description Value
Test System IEEE Standard Distribution System 33-bus radial system
Total System Load Base peak load 3.72 MW
Total System Reactive Load — 2.3 MVAR
Base Voltage Distribution voltage level 12.66 kV
Total Line Length Total feeder length 17 km
Number of Distributed Generators Solar + Wind units 4

Storage System Capacity Battery capacity 1.0 MWh
Battery Power Rating Max charge/discharge rate 0.5 MW
Renewable Penetration Level % of load served by renewables 40-60%
Simulation Time Step DRL control frequency 15 minutes
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6. Performance Evaluation and Comparative
Results of DRL Optimization

6.1 Training Process and Convergence Analysis

The DDPG agent was trained over 1,000 episodes on the
IEEE 33-bus system, with each episode comprising 500
decision steps (15-minute intervals). As shown in Figure 3,
the training process exhibited characteristic reinforcement
learning dynamics: initial high volatility during exploration
(episodes 1-300) followed by progressive stabilization as the
policy converged. The raw reward curve (blue) reflects
immediate performance, including exploration noise
(Ornstein-Uhlenbeck, 6=0.15, 6=0.2), while the smoothed
average (red, 50-episode window) demonstrates consistent
policy improvement. Key observations include: (1) rapid
reward escalation (-150 to -50) during early exploration of
the action space, (2) inflection near episode 400 as the agent
learned to balance renewable utilization and battery
management, and (3) final convergence (-5 £ 2 reward)
achieving the optimal trade-off between emissions, power
loss, and reliability reported in Table 6. This training profile
validates the effectiveness of our reward function design
Section 3.1 and hyper parameter selection Table 4, while the
final convergence to steady-state performance indicates
policy maturation- a critical prerequisite for the deployment-
ready performance shown in subsequent tests.

6.2 Comparative Results of DRL Optimization

Table 6 provide a comparative analysis of different
optimization models based on various performance metrics.
The observed performance hierarchy (Classical < Heuristic <
GA < PSO < DDPQG) stems from the methods’ inherent
adaptability to dynamic grid conditions. Classical
optimization relies on static models, while heuristic methods
introduce limited flexibility. Evolutionary (GA) and swarm-
based (PSO) techniques improve further by exploring
broader solution spaces. DDPG’s model-free reinforcement
learning enables superior real-time adaptation, making it
ideal for highly variable renewable integration. All methods
were evaluated under identical multi-objective criteria (Eq.
3) to ensure consistency. Below is a breakdown explanation
of the performance metrics:

Total Power Loss (kW) as shown in figure 4: This metric
measures the power loss in the system, with lower values
being better. It is often used in power grid optimization to
minimize energy losses. As the table shows, the Proposed

-50 |

-100 |

Reward

-150

-200 *

o 200 400

DDPG Model has the lowest power loss (120 kW), while
Classical Optimization results in the highest loss (200 kW).

Average Voltage Deviation (%) as shown in figure 5:
This measures the deviation from the ideal or desired voltage
level. A lower percentage is better, as it indicates more stable
voltage. The Proposed DDPG Model results in the lowest
voltage deviation (2.1%), while the Classical Optimization
model has the highest deviation (4.8%).

Renewable Energy Penetration (%) as shown in figure 6:
This metric indicates the percentage of energy from
renewable sources used in the system. Higher values are
preferred for sustainability. The Proposed DDPG Model
achieves the highest renewable energy penetration (85%),
while Classical Optimization achieves only 60%.

Carbon Emissions Reduction (%) as shown in figure 7:
This measures the percentage of carbon emissions reduced
by the system. A higher percentage is better for
environmental impact. The Proposed DDPG Model results in
the highest reduction (28%), while Classical Optimization
achieves only a 5% reduction. The large percentage
improvements (e.g., 460% higher emissions reduction with
DDPG i.e. 5.6 times higher in reduction of carbon emissions
with respect to the classical methods) stem from its real-time
decision-making. Classical methods rely on rigid rules (e.g.,
fossil fuel backup when renewables are scarce), while DDPG
proactively shifts energy sources using forecasts and
adaptive storage. This avoids carbon-intensive generation
during critical periods, yielding disproportionate gains. Such
nonlinear improvements are consistent with prior DRL
studies in energy systems [11,17].

Battery Utilization (%) as shown in figure 8: This metric
shows the percentage of battery storage used or utilized in
the system. A higher percentage generally indicates better
usage of available resources. The Proposed DDPG Model
achieves 85% battery utilization, while Classical
Optimization has the lowest at 55%.

Cost Savings ($/year) as shown in figure 9: This is the
amount of cost saved annually as a result of using the
optimization model. Higher savings are preferred. The
Proposed DDPG Model results in the highest cost savings
(%$20,000), while Classical Optimization achieves the lowest
savings ($8,000).

Reliability Index as shown in figure 10: This index
measures the reliability of the system. A higher value
represents a more reliable system. The Proposed DDPG
Model has the highest reliability (0.99), indicating it is the
most reliable system, while Classical Optimization has the
lowest (0.96).

Faw Reward
. |= = Smoothed (50-episode) [~
600 BOT 1000

Episode

Figure 3: DDPG training rewards showing convergence to optimal policy, with raw values (blue) and smoothed 50-episode average (red). Initial exploration
volatility stabilizes after 600 episodes
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Figure 7: Carbon Emissions Reduction Comparison
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Figure 5: Average Voltage Deviation Comparison

Figure 8: Battery Utilization Comparison
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Figure 9: Cost Savings Comparison
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Figure 10: Reliability Index Comparison

Computational Cost: This refers to the computational
resources required (time, processing power, etc.) to run the
optimization model. The categories are High, Medium, and
Low. The Proposed DDPG Model is the least
computationally — expensive  (Low), while Classical
Optimization has the highest computational cost.

Thus, the Proposed DDPG Model consistently
outperforms the other optimization methods across most
metrics: It has the lowest power loss, the highest renewable
energy penetration, the highest carbon emissions reduction,

and the highest battery utilization. It results in the highest
cost savings and has the best reliability. It also has the lowest
computational cost. Other optimization methods like Genetic
Algorithm, Heuristic Algorithms, and Particle Swarm
Optimization perform well, but they don’t quite match the
Proposed DDPG Model in terms of most of these key
metrics.

During each decision-making interval, the DRL agent
observes a set of system variables that collectively define the
current operating state of the smart grid. These state
variables reflect real-time conditions, including total energy
demand, the available generation from solar and wind
sources, the current state of charge (SOC) of the battery
storage system, and the amount of carbon emissions
resulting from non-renewable energy generation. Table 7
presents a sample of these state observations recorded over
multiple time steps during the simulation. The variability
across time reflects the dynamic nature of renewable energy
availability and fluctuating demand, which the agent must
continuously adapt to when selecting optimal control
actions. By learning from these changing states, the DRL
framework gradually develops effective policies for
balancing energy flows, maximizing renewable utilization,
and maintaining system stability under realistic operating
scenarios.

Table 6: Comparative analysis of Optimization Models

Metric Classical Heuristic Genetic Particle Swarm Proposed DDPG
Optimization Algorithms Algorithm Optimization Model

Total Power Loss (kW) 200 180 160 140 120

Average Voltage Deviation 48 40 35 30 21

(%)

Renewable Energy

Penetration (%0) 60 65 70 & 8

Carbon Emissions Reduction 5 10 12 15 28

(%)

Battery Utilization (%0) 55 65 70 75 85

Cost Savings ($/year) $8,000 $10,000 $12,000 $15,000 $20,000

Reliability Index 0.96 0.97 0.975 0.98 0.99

Computational Cost High Medium Medium Medium Low

Reference [5] [6] [9] [22] Current work

Table 7. Sample of system state variables observed by the DRL/DDPG agent across several time steps during training. Sampled from 1000-episode training

run

Time Step Energy Demand Solar Gen Wind Gen Battery SOC Carbon Emissions
t 1200 kW 500 kW 350 kW 60% 200 kg
t 1000 kW 700 kW 400 kW 65% 150 kg
ts 1400 kw 600 kW 500 kW 70% 250 kg
ta 1600 kw 400 kW 300 kW 55% 300 kg
ts 1100 kW 800 kW 600 kW 75% 120 kg
te 1300 kW 450 kW 350 kW 50% 220 kg
t 1500 kW 500 kW 400 kW 80% 180 kg
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The control actions selected by the DRL agent at each
time step directly influence the real-time operation of the
smart grid. The battery charging/discharging action
determines whether excess renewable energy is stored for
later use or whether stored energy is released to meet
demand, depending on system conditions. Simultaneously,
the renewable allocation ratio controls the proportion of
renewable generation that is immediately used to serve the

load versus being directed into storage. As shown in Table 8,
the agent dynamically adjusts these control parameters in
response to changing grid conditions observed in the state
space. Through repeated interactions during training, the
agent learns to make these decisions in a way that balances
short-term operational needs with long-term objectives such
as minimizing carbon emissions, optimizing battery
utilization, and maintaining overall grid stability.

Table 8. Sample of control actions selected by the DRL agent in response to observed system states. Sampled from 1000-episode training run

Time Step Battery Action (A_b(t)) Renewable Allocation (A_r(t))
t +200 kW (Charging) 85%
t2 -100 kW (Discharging) 80%
ts +150 kW (Charging) 75%
ta -250 kW (Discharging) 70%
ts 0 kw (ldle) 90%
te +100 kW (Charging) 78%
t7 -150 kW (Discharging) 80%
7. Conclusions studies could further validate the practical effectiveness of

In this paper, a novel DRL-based framework, employing
the DDPG framework, has been developed and applied for
smart grid energy management. The proposed approach
effectively addresses the key challenges associated with
integrating variable renewable energy sources into modern
power systems, while simultaneously optimizing grid
performance, minimizing carbon emissions, and improving
operational cost efficiency.

Comprehensive simulations were conducted using the
IEEE 33-bus test system, allowing for detailed evaluation of
the model’s capability across multiple performance
indicators. The DRL-based model was benchmarked against
widely used optimization methods, including Classical
Optimization, Heuristic Algorithms, Genetic Algorithms,
and PSO. Across all comparative metrics including power
loss reduction, voltage deviation stability, renewable energy
penetration, carbon footprint reduction, storage utilization,
cost savings, and reliability index the proposed DDPG
framework consistently outperformed all conventional
approaches.

Importantly, the DDPG model not only demonstrated
superior technical performance but also achieved these
improvements with lower computational requirements,
making it highly suitable for real-time smart grid operations
where scalability and adaptability are critical. The agent’s
ability to dynamically balance energy generation, storage,
and demand under continuously changing grid conditions
highlights the significant potential of DRL in advancing the
future of sustainable energy systems.

While the results are highly promising, future work may
explore extending the framework to larger, more complex
grid topologies, incorporating additional uncertainty factors
such as load forecasting errors, and investigating hybrid
reinforcement learning approaches that combine DRL with
predictive Al models. Additionally, real-world deployment

DRL-based energy management systems in live operational
environments.

In conclusion, this research demonstrates that Deep
Reinforcement Learning offers a highly adaptable, scalable,
and efficient solution to the growing complexities of smart
grid optimization, providing a powerful pathway toward
achieving long-term energy sustainability and carbon
neutrality objectives.
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