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Abstract: Detection of structural damages is significant step in structural health monitoring process, and should be done 

as accurately as possible. Assessing the condition of a dam is one of the crucial steps in dam conditions assessment in the 

traditional method of Dam Health Index known as Dam Finite Element Analysis (DFA). In this paper, the author examines 

the methods of improving and extending the evaluation and scenario analysis based on analytical techniques of Machine 

Learning (ML).In particular, this paper examines the damage identification in the numerical simulation of the 

displacement of the dam from finite element analysis (FEA) using the classification techniques of support vector machine 

and artificial neural networks. Sizeable numerical nonlinear FEM simulation was carried out using ANSYS software on 

elements of water height changes with respect to upstream load, wave load and uplift forces database creation. This 

baseline FEA data provides the basis for more efficient and effective use of ML approaches that can then derive 

displacement performance within minutes under different operational rules or changed climate conditions.The study 

shows that in the assessment of displacement performance of Koyna dam in India, the ANN model offers a better result 

than the SVM. This study shows that the application of ML technologies can be an indispensable addition that reduces 

the efforts, time, and calculations needed in comparison with pure FEA. The integration of ML techniques with FEA is 

shown to be a promising approach for supporting structural health monitoring in dam engineering. 

 

 

Keywords: Finite Element Method (FEM), Machine Learning (ML), Artificial Neural Networks (ANN), Support Vector 

Machine (SVM), Dam deformation prediction. 

1. INTRODUCTION 

Structural health monitoring (SHM) of dams is crucial for 

preventing failures and improving infrastructure 

maintenance. It entails having a proper method to evaluate 

the condition of a structure by detecting faults. To avoid such 

pitfalls, it should be emphasized that early detection is critical 

during the structure’s life cycle. Thus, having the model for 

estimating the degree of dam deformation helps in 

interpreting the influence of environmental loads. Although 

this paper mainly focuses on the applicability of such models 

especially in the determination of displacement of dams using 

finite element modeling. Nevertheless, the existing structures 

and geometrical characteristics of dams are challenging to 

determine the true correlation between deformations and 

environmental loads. Several investigations deal with the 

utilization of machine learning for estimating the behavior of 

dams and the most frequent instruments of AI are Artificial 

Neural Networks (ANN) and Support Vector Machines 

(SVM) In the presented studies, data from history and real-

time monitoring have been used. The current work focuses 

on utilizing finite element simulations. Most of the current 

research works use historical displacements for dams or 

sensors data and environmental conditions as an input to train 
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ANN and SVM models. This approach offers useful 

information on actual behavior of a dam. However, the use of 

historical data can be restricted by some factors, for example, 

there can be a lack of data, and the data collected can be 

insufficient or inadequate to create an accurate model or the 

behavior of the system remains constant which does not take 

into consideration future changes in waters levels, loads, or 

the material properties. 

This is where the uses of AI tools and machine learning 

becomes so important and a worthy investment to make. This 

approach improves dam behavior understanding and 

enhances stability monitoring efficiency. First, machine 

learning models are able to handle high non-linearity in data 

and any non-linear relationship that may exist in data about 

the behavior of dams cannot be captured by the traditional 

methods; therefore, machine learning offers robust and 

dynamic methods of forecasting than the traditional ones. 

The integration of AI tools with historical data helps the 

researchers achieve higher predictive flexibility for the 

analysis of dam safety and to avoid such shortcomings as 

simplified analyses and insufficient record of data. 

However, advanced application of machine learning and 

FEM approaches introduced as supplementary information in 

the area of dam simulations could create a large impact on its 

effectiveness. FEM analysis addresses the structural behavior 

of dam through load and environmental effects and materials 

properties. FEM simulations can be easily calibrated with 

real time and historical data using AI and machine learning, 

therefore improving the accuracy of the overall prediction. In 

addition to the framework reinforcing the capacity to capture 

spatial and temporal variations, it also upgrades the 

simulation by integrating the properties of the actual physical 

dam into the predictive model. 

In the subsequent discussion, potential applications will be 

discussed and examples of how these applications have been 

applied successfully in various research studies will be 

discussed and highlighted to justify how the integration of 

Artificial intelligence, Machine learning and FEM 

applications in the coming future can possibly elevate the 

field of dam behavior prediction. 

Several authors [1] assessed the ability of artificial neural 

networks (ANNs) in predicting dam deformation and 

comparing this with a conventional statistical approach. Iron 

Gate 1 is a gravity dam while Vrutci is an arch dam Their 

study only considered two kinds of concrete dams namely; 

For each case, a NARX neural network suitable for working 

on time series data sets of dam deformation, water level, air 

temperature and dam age measurements was trained. 

Compared with the multiple linear regression, the proposed 

NARX model shows much better performance especially in 

detecting abrupt variation of deformation. This superiority is 

explained by the fact that NARX takes into account prior 

data, which means that irreversible deformations are taken 

into account, thus greatly increasing the efficiency of 

monitoring the stability of dams compared to various 

statistical methods. However, it is important to note that the 

paper does not delve into issues such as data gaps such as 

short historical data series and the fact that ANN training 

requires high-quality historical data. 

In another work [2], the authors considered case of the 

applicability of the hybrid AI models for the prediction of 

displacements of dam using the historical data of 11 years 

monitoring of the Fei Tsui dam from Taiwan. To determine 

relations which could potentially affect the dam movement 

the researchers used correlation analysis on water level, air 

temperature and temperature of the body of the dam. These 

factors were then used as the input to most AI models that 

were developed using most of the following approaches. The 

comparison included such basic classifiers as Support Vector 

Machines (SVM) and Artificial Neural Networks (ANN) as 

well as the more high-level hybrid models. Out of these, the 

proposed adaptive time dependent evolutionary least squares 

SVM model named as ELSIMT minimized the error rates of 

Mean Absolute Percentage Error (MAPE) of 8.14% and Root 

Mean Square Error (RMSE) of 1.08 cm and very high value 

of the coefficient of determination (R² = 0.993). This means 

the degree of variance between the final model with the actual 

observed dam displacements. These results imply that 

ELSIMT a hybrid AI model, provides a much higher 

accuracy level in the prediction of dam displacement and 

increases the efficiency of dam safety management by giving 

a prior notice of the dam movement. Furthermore, in the 

context of dam safety monitoring, the study [3] proposed a 

novel LSTM model for predicting dam displacement. This 

model excels in utilizing historical data, such as ground 

displacement records, to accurately assess risks related to 

water pressure fluctuations, temperature changes, and 

structural aging. A key innovation in this model is its 

categorization of input variables based on their temporal 

impact: retardation factors such as the water, air and dam age 

delay variables while other factors that allow instant effects 

are water, air or dam age delay variables. From the updated 

values of the delayed variables by the LSTM memory block 

and by the inclusion of the immediate effect variables at the 

output, the model is thus able to capture both the short and 

long dependency values in the data. It helps to decide which 

variables to include with a higher level of efficiency in 

comparison with traditional approaches and yields better 

predictive accuracy. Real-world data from a concrete arch 

dam verified that the improved LSTM model outperforms the 

traditional model, thus proving that the former tool is a 

reliable means in achieving better safety management of 

dams via accurate displacement prediction.  
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A pioneer work [4] proposed a CNN-based approach for dam 

safety assessment with real deformation data taken from the 

Shuikou Hydropower Station. The data, such as horizontal 

displacements, temperature, water depth and reservoir 

inflow, are directly input into the CNN model without 

requiring the computation of physics-based simulations. 

Compared with more conventional techniques, it can be seen 

that the CNN model provides higher accuracy and 

effectiveness in terms of generated metrics, and the method 

of anomaly detection formulated by the model is completely 

automated and does not require intervention from people. 

Despite admitting limitations related to data quality, the study 

highlights the CNNs’ astonishing ability to transform dam 

safety through providing fast singular value diagnosis from 

real behavior. 

Likewise, another study is centered a reservoir inflow 

estimation [5] of the Zayandehroud Dam Reservoir, Iran 

using historical data and ANN and SVM models. This 

research applied ANNs and SVM to enhance reservoir inflow 

forecast. Specifically, the ninth model configuration, which 

used both SVM and ANN with the help of optimized inputs, 

showed the highest results. In the present model, high 

correlation coefficients of R 2 from 0.89 to 0.96 to different 

training, validation, and testing datasets from the presented 

formula of the model have been attained and low RMSE 

values of 23 to 48. This confirms the stability of the presented 

model’s ability to forecast inflow, proving the versatility of 

machine learning methods in the course of dam studies apart 

from its structural aspect. 

In another study [6], the authors proposed a new method to 

assess the RCS of CFRDs using an ANN model. While 

Clement’s theory and an equation derived from field data 

were found to show more success over prior models, this 

model sought to work with data obtained from 30 CFRDs; 

therefore, it significantly increased accuracy. The ANN 

model was found to be most beneficial in a manner that it can 

give the values of the RCS without the need for conducting 

the tests. Thus, despite certain advantages and potentials for 

practical use the given model has a number of theoretical 

drawbacks: it has no theoretical backing and cannot explain 

why a particular prediction is arrived at. These results (from 

the above study) seem to come in line with the enhancing role 

played by ANNs which are more efficient than existing 

techniques in predicting RCS in CFRDs besides the fact that 

it is easier to use. 

The other strategy still involves integrating new AI models 

into the existing monitoring systems since it is real-time and 

offers first signs with the help of sensor data. This method 

provides appropriate data regarding the behavior of a dam in 

actual time, but it expects a continuous flow of data from 

proper maintained instruments. This approach has been found 

by research to possess several limitations include; the model 

requires an excellent monitoring network because data is 

crucial and should be consistent and updated. Also, there is a 

problem of having less number of real time data which is 

mostly because of COVID-19 and it becomes rather 

challenging to handle number of cases in a reliable manner. 

It is related to current research work [7] concerned with the 

evaluation of the real time of sensory data for the forecasting 

of concrete dam deformations using a selected deep learning 

model- convolution of neural network CNN. Their plan 

involves acquiring deformation rates from the strain gauges 

embedded on the body of the dam in real time. Consequently, 

as constituted by several convolutional and fully connected 

layers, the CNN receives improvements in the capabilities of 

extracting spatial and temporal characteristics from this 

sensor data to identify the relational and patternistic 

reflections which constitute deformation trends. Hence, 

during the development of the CNN algorithm on the given 

historical sensor data, the possibility of the system to capture 

the usual deformation profile of the dam under this condition 

can be learned. Once trained, the model can be used to predict 

subsequent deformations from the actually sensed real time 

measurement. 

Some of the benefits highlighted in this study include; high 

accuracy in comparison to the standard approaches and 

shallow architect and real time to track anomalies 

automatically as well as features extraction without raw 

design. But the researchers also provided some of the 

drawbacks, including the model’s reliance on the higher 

quality and amount of sensor data, the opaque nature of 

CNNs, and the requirements for both machine learning and 

dam engineering backgrounds. Nevertheless, the work of Xi 

et al explained that deep learning has great potential in real 

time deformation prediction using sensor data in the 

monitoring of dam safety. The study also calls for the use of 

other parallel approaches and human interventions while 

adopting such sophisticated methods for determining the 

safety of dams. 

Concerning machine learning of dam deformation there are 

various and progressive improvements made recently 

especially when tested the statistic approaches with artificial 

neural network (ANN). As the Dongjiang concrete arch dam 

indicates, real-world issues investigated in [8] indicate 

similar patterns; ANNs, specifically ELMs, can surpass 

traditional models pegged to a higher likelihood of modelling 

non-linear behaviours evident in such structures as dam 

systems. 

Likewise, [9] also examines the use of both historical and 

real-time data for the prediction of dam deformation and 

determination of load impact in several arch dams. To include 

historical data in this study, deformation measurements have 

been gathered from different sensors installed on the dam for 

a long duration and matched with the environmental load data 
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including; water pressure, temperature, and seismic activity 

taken simultaneously with a deformation measurement. As 

live sensor data, real-time measurements of deformation of 

the dams are used. To this end, the researchers advance a 

model with a Temporal Convolutional Network (TCN) and a 

Variational Mode Decomposition (VMD). VMD breaks 

down historical data into separate frequency signals with an 

indication of the relationship between deformation and a 

certain number of load frequencies; TCN processes the 

signals resulting from the breakdown of data to determine 

how different frequencies of deformation affect various 

environmental loads. Currently, the proposed model 

incorporates both historical and instantaneous values in the 

hope that increased accuracy shall result due to the use of 

both, and in addition the model delivers quantification of how 

different loads affect observed deformation in a fashion 

beneficial to dam safety engineers. However, as with all 

predictive models relying on the available data, the accuracy 

of the model heavily relies on the quality, quantity and 

efficiency of the historical data used for model building and, 

further, on its ability to respond to future unexpected 

situations, as the model draws its decisions from the training 

data information only. Nevertheless, [8] can be viewed as a 

promising approach to dam safety monitoring based on 

historical and current data as well as deep learning algorithms 

with acknowledging simultaneous usage of complementary 

methods for dam safety assessment and decision-making. 

The research by [10] is therefore a great improvement toward 

predicting dam displacement in that it fills the history and 

current monitoring gap. Data science composes the Finite 

Element Method (FEM) on displacements resulting from the 

effects like pressure of water and temperature utilizing 

history data of material as well as geometry on dams. 

Together with the spatial coverage, these respective events 

offer useful temporal contextualization of displacement data. 

Furthermore, this model puts into account the real time 

monitoring data, displacements information from sensor is 

used to fine tune FEM model, to diminish the uncertainty and 

work according to geographic signal and noise for better 

prediction. The subsequent application of the Random 

Coefficient Model extends the analysis by finding trends and 

associations which could be successful for the accounting of 

spatial dependency between the monitoring points and 

heteroscedasticity of material parameters. The proposed 

integration of elements is to have better displacement 

predictions through the application of FEM and data-driven 

methods. Additionally, it improves knowledge about the 

behavior of the dam and shows spatial and temporal changes 

to help then find potential weak points or anomalies within 

such structures. Having several instances of real-time data 

integrated constantly also enhances the overall monitoring 

capacity of the model as it adjusts and takes into account 

recent changes in the dam conditions. 

However, this approach often suffers from: High 

computational cost: Running extensive FE simulations can 

be computationally expensive and time-consuming. Also, 

Limited data availability: Existing studies typically utilize a 

limited number of FE scenarios, restricting the model's 

generalizability. 

Ensuring the structural integrity of dams is paramount. 

Traditionally, observation systems and inspections are 

employed to detect changes in a dam's performance. 

However, manual analysis of this data can be time-

consuming for experts. To address this, researchers are 

exploring alternative methods for dam safety monitoring. 

This paper investigates the effectiveness of Artificial Neural 

Networks (ANNs) and support vector machine (SVM) in 

predicting concrete dam deformation. The authors compare 

ANNs to common statistical methods like Multi-Linear 

Regression (MLR), but also acknowledge the use of Finite 

Element Models (FEM) for periodic safety inspections. Their 

goal is to assess the potential advantages of ANNs for real-

time dam safety monitoring, particularly in comparison to 

traditional statistical methods. 

Although Artificial Neural Networks (ANN) and Support 

Vector Machines (SVM) are considered traditional machine 

learning techniques, they have consistently demonstrated 

strong performance in structural health monitoring 

applications, particularly in dam deformation prediction. 

Their relatively simple architectures, lower computational 

requirements, and well-established reliability make them 

especially suitable for cases where dataset size is limited or 

where model interpretability is essential. Several recent 

studies [2, 4, 5] have shown that ANN and SVM can 

outperform more complex models in dam-related forecasting 

tasks. 

In this study, SVM and ANN are employed as baseline 

models integrated with the Finite Element Method (FEM) to 

predict dam displacements. Unlike other approaches that rely 

solely on historical sensor data or require extensive new 

simulations, the proposed method leverages pre-generated 

FEM scenarios, offering a faster and computationally 

efficient alternative for displacement prediction. 

 

2.AREA OF INTEREST 

The area of interest in this study focuses on the Koyna 

concrete gravity dam situated in Maharashtra, India. The 

dam's geometry specifications are depicted in fig. 1.  

As the basis of the study, previous research conducted by 

[11], [12], and [13] were utilized as references. The dam's 

material properties, along with those of the foundation and 

reservoir, were compiled from sources provided also by [12] 

& [13] and are summarized in Table 1.  
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Figure 2 illustrates the modeling approach employed, with 

the dam modeled as 2-D plane stress elements and the 

foundations as 2-D plane strain elements using ANSYS 2020 [14]. 

A material damping ratio of 5% was selected for the first 

mode shape of the dam structure. 

FIG 1.  Geometry of Koyna dam model [12] 

 

FIG 2. The modelled dam by ANSYS 

TABLE 1. The material properties of the dam and foundation rock 

Dam Body 
Elastic Modulus (Mpa) 31027 

Mass Density (kg/𝑚3) 2643 

Poisson’s Ratio 0.2 

Rock Foundation 
Elastic Modulus (Mpa) 62054 

Mass Density (kg/𝑚3) 3300 

Poisson’s Ratio 0.33 

3.ANSYS MODELLING AND ASSUMPTIONS 

In this paper, we are interested in the normal case of the 

reservoir as we aim to simulate the current situation rather 

than design the dam. Designing the dam will be considered 

for future work. Our current focus is on studying the effect of 

changing water levels on the dam's behavior, as the water 

level is a key factor influencing the wave load, the upstream 

and downstream conditions, and the uplift load. 

In the present work finite element made using ANSYS at 

water level from 70m to 102m has been carried out. We 

managed to get displacement results from the model which 

will be used in AI models to run different scenarios without 

running new numerical simulations of the models. For 

instance, when there is a need to understand the model for 

water level of 92.5 meters in the future, then the MATLAB 

model of the ANN or the SVM model can be used without 

having to solve the numerical model. For the normal dam 

case, represented as Case B, the loads are as follows: self-

weight load acting; upstream water level is normal; silt 

pressure is there; downstream water level is normal; 

additional loads of ice and wave pressures are considered; 

uplift pressure drains; and no earthquake load as shown in 

table 2 [15]. The results obtained from the ANSYS finite 

element simulations were then utilized to build training and 

testing datasets for the machine learning models. For each 

load scenario simulated, the corresponding displacements (in 

X-direction, Y-direction, and total) were extracted and paired 

with their respective input conditions. These input-output 

pairs formed the foundation for training the ANN and SVM 

models. The Finite Element Method was integrated into the 

machine learning pipeline as a data generation tool, enabling 

the models to efficiently learn deformation behavior. The 

methodology is illustrated in Figure 3. This integration 

allowed the trained models to make displacement predictions 

under new load scenarios, without the need for additional 

computationally expensive FEM simulations. 

 

Fig 3. Simplified Workflow of Integrating Finite Element Simulation with Machine Learning for Dam Displacement Prediction 
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TABLE 2. The gravity dam cases of loading (USACE) 

Case 
 

Self-
Weight 

US water 
level 

Silt 
pressure 

Tail/DS water 
level 

Ice and wave 
pressure 

Uplift 
pressure 

Earthquake 
load 

A Yes No No No No No No 

B Yes Normal Yes Normal Yes Drained No 

C Yes Flood Yes Flood No Drained No 

D Yes No No No No No Yes 

E Yes Normal Yes Normal No Drained Yes 

F Yes Flood Yes Flood No Undrained No 

G Yes Normal Yes Normal No Undrained Yes 

 

 

FIG 4. Fundamental concept of SVM-based classification [16]. 

4.SUPPORT VECTOR MACHINE (SVM) 

Support Vector Machines (SVMs) are powerful methods of 

computation that are widely used in classification and 

regression problems. The capabilities of SVMs are further 

elaborated by Hariri [16]. One of their greatest strengths lies 

in the parameter optimization process, which is formulated 

as a convex problem—thus guaranteeing a global optimum [17]. 

Derived from statistical learning theory, SVMs were 

developed by Vapnik et al. [18, 19]. Their fundamental 

principle is to map the original input space into a higher-

dimensional feature space where linear separation becomes 

possible. With the use of kernel functions, it is possible to 

perform the necessary computations without explicitly 

transforming the data into high dimensions, yet achieving 

equivalent outcomes. 

The goal is to find an optimal hyperplane that best separates 

two classes of objects by maximizing the margin—the 

distance between the two nearest data points of opposite 

classes—which enhances the generalization ability of the 

model. Due to their stability and effectiveness, SVMs have 

been widely implemented across various domains. 

Consider a training set of n data points, x₁, x₂, …, xn ∈ M, 

each of which is labelled yᵢ ∈ {-1, +1} and the goal is to map 

these data points into another higher (and potentially 

infinite) dimensional feature space where they can be 

separated by a linear hyperplane. This transformation 

enables the identification of an optimal hyperplane that 

effectively separates the classes, as shown in Fig. 4. 

Mathematically, the hyperplane can be represented by the 

decision function as shown in equation 1: 

f(x) = w^T ϕ(x) + b                                                (Eq. 1)                                                                  

Where: 

• f(x) is the decision function. 

• w is the weight vector determining the hyperplane's 

orientation. 

• b is the bias term. 

• ϕ(x) is the mapping function from the input space 

to the feature space. 

The aim is to determine the hyperplane that provides the 

largest distance between the nearest data point belonging to 

the different classes. Since the parameters w and b are 

determined, a new example x can be classified by evaluating 

the sign of f(x). 
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In the area of dam engineering the use of SVMs cover a 

broad spectrum of application areas such as early-warning 

systems and models within computer vision, safety 

monitoring of models, reviews of the previously used 

predictive models and the optimal shape design of a dam. 

For instance, Gu et al. [20] applied LS-SVMs for back 

analysis of RCC dams while Su et al. [21] worked with 

parameter optimization of gravity dam using coupled SVM 

and ANN models. Further, Li et al. [22] used SVMs to model 

the progressive failure of RCC dams and so the sign of f(x). 

 

5.ARTIFICIAL NEURAL NETWORKS (ANNS) 

Artificial Neural Networks (ANNs) are computational 

models inspired by the structure and functionality of the 

human brain. They are designed to solve complex, non-

linear problems by learning patterns from data in a manner 

similar to human cognition [23] As shown in Figure 5, an 

ANN consists of layers of interconnected artificial neurons: 

the input layer, one or more hidden layers, and the output 

layer. Each connection between neurons carries a weighted 

signal, which is essential in determining the network’s 

predictive accuracy. 

 

Fig 5. Formulation of simple neural network 

The input layer receives the raw data, while the hidden layers 

process this data through nonlinear transformations and 

transmit the result to the output layer. The architecture and 

number of hidden layers, along with the values of the 

connection weights, significantly influence the network’s 

performance. 

Learning in Artificial Neural Networks (ANNs) is typically 

achieved through the backpropagation algorithm. In this 

process, each neuron's input is computed as the weighted 

sum of the outputs from the previous layer, as shown in 

Equation (2): 

(Input)x = ∑(node value) × connection weight        (Eq. 2)     

                     

This input is then passed through a transfer (activation) 

function to produce the neuron's output, as shown in 

Equation (3), enhancing the model’s ability to capture 

nonlinear relationships: 

(out)x = f (input)x                                                    (Eq. 3) 

where: 

 Inputₓ is the total input to neuron xxx, 

 node value refers to the output from the previous 

neuron, 

 connection weight is the weight of the link 

between neurons, 

 f() is the activation function, 

 Outputₓ is the resulting output of neuron xxx. 

Common transfer functions used in ANN include: 

 Logsig: A sigmoid function that maps inputs to 

the [0, 1] range (Figure 6a), 

 Tansig: A hyperbolic tangent function producing 

outputs in the [−1, +1] range (Figure 6b), 

 Purelin: A linear function used when a non-

saturating output is needed (Figure 6c) [24] 

 
Fig 6a. Logsig 

 

Fig 6a. Tansig 

 

Fig 6a. Purlin 

Fig 6. Transfer functions of ANN 
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In the final stage of the backpropagation algorithm, the 

connection weights are updated by incorporating the 

calculated weight adjustment values into the existing 

weights, as expressed in Equation 4. During the forward 

pass, input signals propagate through each layer of the 

network to generate output predictions. The discrepancy 

between these predicted outputs and the actual target values 

is then used to iteratively refine the connection weights, 

thereby improving the network’s learning performance. 

   Δwji
L = wji

L(new) + wji
L(previous)                                           (Eq. 4)       

where “new” and “previous” stand for the current and 

previous iterations according to Backpropagation neural 

network algorithm incremental change wji
L 

Numerous studies have employed Artificial Neural 

Networks (ANNs) for the prediction of dam deformation. 

For example, [25] developed a hybrid PSOA-ANN model to 

forecast embankment dam displacements under seismic 

loading, demonstrating the effectiveness of ANN in 

capturing complex nonlinear relationships. 

 

6. Input Dataset Structure and Feature Description 

The same input dataset was used for training both the 

Artificial Neural Network (ANN) and Support Vector 

Machine (SVM) models. This dataset was constructed from 

33 finite element simulation cases generated in ANSYS, 

each corresponding to a unique upstream water level ranging 

from 70 to 102 meters — representing a realistic operational 

range for the dam. 

Each simulation case included 20 input features, selected to 

reflect the most relevant physical parameters influencing 

dam displacement. These features include: Hydraulic 

loading parameters: water level, upstream level, Silt-related 

conditions: upstream with and without silt, corresponding 

slopes, Wave parameters: wave height, wave location, Uplift 

pressures at 11 foundation nodes. These 20 input parameters 

were organized into a matrix of size 33×20, where each row 

represents a full loading scenario. The corresponding output 

for each scenario was the predicted total displacement 

obtained from FEM, used as the target value in model 

training. This unified input structure allowed for consistent 

training across both the ANN and SVM models, while each 

model applied its own assumptions and hyperparameter 

configurations as described in the following sections. 

 

7.PROPOSED SVM FOR THE PRESENT WORK 

This has been tested through a sample of the eight different 

SVM types in MATLAB as given in table 3 and the most 

representative one for the three displacements included here 

= x, y and sum is the Medium Gaussian SVM. The tests that 

show the different models are presented in the table have 

brought out the coefficient of determination ‘R2’ in relation 

with the training as well as test data set. Following this, 

diagrams of plans for the three targeted displacements that 

the model suggests to be the best are provided next. Figures 

7-9 display the performance as response plots of the 

displacement in the y and x directions, and the sum 

displacement of the Medium Gaussian SVM model, which 

has the best performance. Moreover, a validation plot of the 

actual vs the predicted and test performance of some hidden 

data subsequent to simulating some data is also included. 

TABLE 3. The eight different S 

Case Displacement (Y-dir.) Displacement (X-dir.) Displacement (Sum) 

Fine tree 0.85 0.82 0.75 

0.91 0.95 0.98 

Hyperparameter -0.19 ـــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــــــــــــــــــ 

 ـــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــ 1.64-

Linear -0.15 0.71 -2.43 

-1.64 0.66 -0.5 

Quadratic 0.57 0.87 0.64 

0.72 0.99 0.74 

Cubic -2237 0.28 -9.82 

-738 0.69 -13 

Fine Gaussian 0.89 0.94 0.74 

0.96 0.99 0.98 

Medium 

Gaussian 

0.98 0.97 0.83 

0.99 0.99 0.95 

Coarse 

Gaussian 

0.59 0.67 0.06 

0.6 0.80 0.15 

VM used with their R2 values 
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(a)                                                                             (b) 

 

( c ) 

Fig 7. Performance of displacement y direction of the medium Gaussian SVM model (a) the response plot (b) 
Validation predicted vs. actual plot (c) the test performance of some hidden data 
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(b)                                                                           (b) 

 

                                                                                        ( c ) 

Fig 8. Performance of displacement X direction of the medium Gaussian SVM model (a) the response plot (b) Validation 

predicted vs. actual plot (c) the test performance of some hidden data 
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(a)                                                                                            (b) 

 

                                                                                               ( c ) 

Fig 9. Performance of the sum displacement of the medium Gaussian SVM model (a) the response plot (b) Validation 

predicted vs. actual plot (c) the test performance of some hidden data. 
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Fig 10. Data sets regression state of displacement of y-direction (testing in Matlab included). 

 

Fig 11. M.S.E of training and validation and the number of epochs set for the scenario(Y-dir.). 

 

Fig12. Displacement of X-direction at the crest level 
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Fig13. M.S.E of training and validation and the number of epochs set for the scenario (X-dir.) 

 

Fig 14. Displacement of sum at the crest level 

 

Fig 15. M.S.E of training and validation and the number of epochs set for the scenario (Sum disp.) 
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TABLE 4. ANN fitting (different transfer functions) 

  Displacement (Y-

dir.) 

Displacement (X-dir.) Displacement 

(Sum) Scenario included training 0.9897 0.9997 0.9998 

 

Validation 0.9940 0.9994 0.9939 

 

Testing 0.9778 0.9998 0.9996 

All 0.98739 0.9997 0.99767 

Scenario 

excluded 

training 0.9950 0.9995 0.9892 

Validation 0.8494 1 0.9996 

Testing 0.9984 0.9999 0.99993 

All 0.9239 
 

0.9998                 

0.996243 

8.PROPOSED ANN FOR THE PRESENT WORK 

As for the artificial neural network (ANN) model, we 

developed it by the internal test and data segmentation. This 

led to the ability of evaluating the trained model to be sound 

and credible. The results of displacement in the y and x 

direction and the addition of both are in the form of graphs 

trained, validated and tested across showing the performance 

of the model. Figures 10-15 present the model's performance 

and Mean Squared Error (MSE). Specifically, one figure 

depicts the overall performance of the model, while another 

illustrates the MSE for training and validation, along with the 

number of epochs set for the scenario in the y, x, and sum 

directions, respectively. 

The artificial neural network (ANN) model was developed 

using a structured data segmentation and internal testing 

approach to evaluate its predictive capability. The same 

dataset used for SVM, consisting of 33 samples with 20 input 

features each, was employed. The ANN was trained using 

two different scenarios, and the performance was evaluated 

using standard metrics. The effectiveness of the ANN model 

under different data partitioning scenarios—with and without 

including the test set in training—was evaluated and is 

presented in Table 4. The table summarizes the model’s 

coefficient of determination (R²) across displacement 

directions (X, Y, and total). 

In the first scenario, the dataset was divided using 

MATLAB's default partitioning function, with 70% of the 

data for training, 15% for validation, and 15% for testing. In 

the second scenario, a custom partitioning was used, with 

30% allocated for training, 35% for validation (23 

realizations), and 15% for testing (5 realizations). In the 

second case, due to a shortage of samples for testing, we 

duplicated existing records to meet the minimum required 

amount for a valid ANN test set, which typically requires at 

least 10 samples. In the second scenario, the available test set 

consisted of only 6 records, which was considered too limited 

to yield a reliable evaluation of the model's generalization 

capability. To temporarily overcome this limitation, the 

existing records were duplicated to artificially expand the test 

set. Since this phase was purely for external testing and no 

further training was applied, the risk of overfitting was 

minimal. Moreover, this allowed the model’s performance to 

be evaluated under simulated unseen conditions. We 

acknowledge that this approach does not increase data 

diversity, and therefore its limitations are clearly stated. 

Future work will focus on generating additional FEM-based 

scenarios or applying data augmentation techniques to enrich 

the dataset. 

The choice of 10 neurons in the hidden layer was determined 

through trial-and-error experimentation. Multiple 

architectures were tested with varying numbers of neurons, 

and the 10-neuron configuration provided the best balance 

between learning capacity and overfitting control for our 

specific dataset. The decision was based on achieving high 

values of the coefficient of determination (R²) and low Root 

Mean Square Error (RMSE), as well as stable training 

behavior over a reasonable number of epochs. The number of 

epochs was also carefully monitored to avoid overfitting, 

with training stopping when no further improvement was 

observed on the validation set. 

Figures 10–15 illustrate the performance of the ANN model 

across the X, Y, and total displacement directions. These 

figures include regression plots and Mean Squared Error 

(MSE) curves for training and validation sets, along with the 

number of epochs required for convergence in each scenario. 

The final stage involved comparing the best models from 

SVM and ANN. Here, the highest performing model for 

SVM was chosen together with the highest performing model 

for ANN. The choice was then made on an identification of 

which of the models adequately describes the displacement 

of a concrete dam. The outcome was however as follows and 

revealed an even better performance of ANN than SVM in 

our particular case. 
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9.CONCLUSION  

Finally, the present work proposes a systematic methodology 

to perform significant analyses and compare two machine 

learning algorithms, FEM, SVM, and ANN, minimizing the 

need for non-linear analyses. This allowed efficient use of 

time and other resources for making predictions as we used 

finite element scenarios pre-generated, thereby reducing the 

amount of time used in the models while at the same time 

reducing error. Compared to the other methods, this one only 

requires a single input and provides a large range of possible 

model inputs to analyze the reactions of the dam. 

The constructed SVM and ANN models were satisfactory for 

the prediction of the x, y displacements, and the total 

displacement denoting inherent nonlinearity mainly present 

in the finite element analysis. Of even more interest is the fact 

that our ANN model had a higher overall accuracy than the 

SVM in identifying these displacements. Further, using 

existing FE data enabled the creation and comparison of these 

AI models without the need for further computation only 

demonstrating the feasibility of this approach. 

 

10.Future Work 

This study introduces an integrated approach that combines 

Finite Element Method (FEM) simulations with machine 

learning (ML) models for dam deformation prediction. While 

the proposed methodology demonstrates promising results, 

several limitations should be acknowledged.  

Firstly, the dataset used to train the ANN and SVM models is 

relatively small, primarily due to the high computational cost 

associated with generating FEM scenarios. Secondly, the 

generalizability of the developed models may be constrained, 

as the dataset and simulations are based solely on the 

geometry and characteristics of the Koyna concrete gravity 

dam. As such, the applicability of the models to other dam 

types or configurations remains to be evaluated. 

Additionally, uncertainties in the material properties, 

boundary conditions, and applied loads used in the FEM 

simulations could influence the accuracy of the machine 

learning predictions. 

To overcome these limitations, future research will aim to 

extend the methodology by: 

 Expanding the dataset through the generation of 

additional FEM scenarios, synthetic data 

techniques, or real-time sensor data integration; 

 Incorporating a broader range of machine 

learning models, including ensemble methods such 

as Random Forests and Gradient Boosted Trees, and 

advanced deep learning architectures such as Long 

Short-Term Memory (LSTM) and Convolutional 

Neural Networks (CNN), which have proven 

effective in time-series forecasting and spatial 

pattern recognition; 

 Conducting comparative performance analyses 

to benchmark these advanced models against the 

baseline ANN and SVM frameworks presented in 

this study; 

 Enhancing model robustness and 

generalizability by validating predictions under 

diverse operational conditions and dam 

configurations. 

These improvements are expected to support the 

development of a more generalized, accurate, and efficient 

dam deformation prediction system that can be adapted to 

various hydraulic structures and monitoring contexts. 
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