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Abstract: This study utilizes artificial intelligence to predict the optimum lateral confinement ratio for concrete columns through an 

innovative dual-phase approach. First, a comprehensive artificial neural network (ANN) model was developed using analytically 

generated data encompassing diverse parameters: section geometry, dimensions, concrete unconfined compressive strength, 

transverse steel yield strength, longitudinal reinforcement ratio, vertical spacing between ties and confinement configurations. 

Secondly, the model was validated against actual experimental results from the literature, achieving its ability to accurately predict 

the confinement effectiveness coefficient with a mean square error of 0.01 and a mean absolute error of 0.07. This methodology 

bridges the gap between theoretical models and experimental findings while providing a practical tool for estimating confinement 

effects without extensive laboratory testing or complicated mathematical formulas.   
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Nomenclature: 

b Side length of square section or diameter of circular section, mm 

fc′ Unconfined compressive strength, mm 

s Vertical spacing between the centerlines of transverse reinforcement, mm 

fcc Confined compressive strength, MPa 

fyh Yield strength of transverse steel, MPa 

ρ Ratio of longitudinal reinforcement area to the gross area of the concrete section, % 

Φtie Dimension of the horizontal rebar, mm 

 

1. Introduction 

Many researchers have investigated the impact of 

reinforced concrete (RC) column confinement on enhancing 

their compressive strength and ductility [1], [2], [3], [4], [5], 

[6]. Their findings indicate that various parameters 

contribute to this enhancement, including section 

dimensions, section shape, horizontal steel confinement 

configuration, and longitudinal reinforcement ratio. 

However, with the large number of important parameters and 

the wide range of values for each parameter, experimental 

studies typically focus on a limited subset of these 

parameters within specific ranges.  

Based on their experimental studies, many researchers 

have established mathematical formulas that generally 

produce accurate results when applied to the specific 

experimental data from which they were derived. However, 

the accuracy tends to decrease when these formulas are used 

with data from other experimental studies, as the conditions 

and parameters may vary. Establishing an experimental 

program to study the effect of each effective parameter is 

complex and expensive, as it requires testing many 

specimens. Additionally, deriving a mathematical formula 

from such an extensive experimental study that accounts for 

this large number of variables is challenging from a 

mathematical perspective. 

As an alternative to conducting such expensive 

experimental programs, many researchers have employed 

artificial intelligence (AI) approaches to predict the effects of 

confinement. One of the most commonly used AI techniques 

is the Artificial Neural Network (ANN), a highly efficient 

machine learning algorithm capable of handling 

classification and regression problems. The availability of 

enough data for training and validation is the main need for 

creating an accurate ANN model.  

Review of literature related to concrete confinement 

enhancement reveals limitations in applying Artificial 

Neural Networks (ANNs) to evaluate concrete confinement 

effects. Generally, the main issue was the relatively small 

datasets used for model development compared to the 

number of input parameters. For instance, Oreta and 

Kawashima [7] developed an ANN model with 7 input 

parameters using only 29 training and 9 testing samples for 

circular concrete columns. Similarly, Ertekin Öztekin's [8] 

studied square concrete columns confinement utilizing data 

from 16 experimental studies (232 training and 25 testing 



    Vol.54, No2 April  2025, pp: 123-129              Islam M. Alqalyubi et al  Engineering Research Journal (ERJ) 
 

 
 
124 
 

samples), which still maintained a modest dataset relative to 

the model's complexity and parameter space. To overcome 

this limitation in experimental data availability and its 

impact on model accuracy and performance, this research 

proposes an innovative approach: utilizing previously 

published verified strength confinement equations to 

generate a comprehensive synthetic dataset, thereby enabling 

the development of a more robust and reliable ANN model. 

2. Methodology 

 The development of an Artificial Neural Network 

(ANN) model follows several crucial steps. The process 

begins with data collection and feature selection, followed 

by data preprocessing and normalization, continues with 

network architecture design and training and concludes with 

model evaluation and validation. This section begins with a 

brief overview of ANN fundamentals, followed by a detailed 

explanation of each methodological step, including database 

development, data normalization, and the determination of 

optimal network architecture. 

2.1 Artificial Neural Network Essentials 

Artificial neural networks (ANNs), which take 

inspiration from biological neural networks, simulate the 

structure and operations of the human brain and nervous 

system [7]. Even in situations where complex correlations 

between several variables are unclear, ANNs can analyze 

them efficiently. ANNs can estimate the end result due to 

their learning, classification, and generalization processes 

[9]. 

The fundamental building unit of an artificial neural 

network (ANN) is the "neuron" These neurons are organized 

into layers, with each neuron in one layer connected to one 

or more neurons in the following layer, as shown in Figure 1. 

An ANN consists of at least two layers: an input layer and an 

output layer, with one or more hidden layers in between. The 

input layer contains neurons corresponding to the number of 

features or parameters that affect a certain process; 8 

parameters were utilized in this research; therefore, the input 

layer comprises 8 neurons. The output layer represents the 

result, which includes the confined strength as a ratio of the 

unconfined strength. The number and architecture of the 

hidden layers are determined during the training process. As 

illustrated in Figure 2, each neuron receives an input, 

performs a mathematical operation and produces an output 

for the next neuron Figure 2. Generally, the neuron's input in 

subsequent layers comes from the outputs of the connected 

neurons in the preceding layer. Each input value is 

multiplied by a weight assigned to the link between the 

neurons. These products are summed, and a bias value is 

added. The resulting summation is then passed through an 

activation function, which models the interrelationships 

between the various hidden layers, as expressed by equation 

1. 

   (∑      )                                                             (1) 

 

In Equation 1, „O‟ designates the output given by the 

ANNs, „x‟ is the input value, „w‟ is the coefficient of weight, 

and „b‟ depicts the added bias value. 

 
Figure 1: Multi-layer feedforward neural network with backpropagation 

 

 
Figure 2: Neuron of an artificial neural network 

 

The training process of an artificial neural network ANN 

begins with assuming an architecture, which involves 

determining the number of input neurons equal to the 

number of features, hidden layers, neurons per hidden layer, 

and output neurons based on the desired output. Initial 

assumed weights and biases are assigned for each connection 

between neurons with small random values. During forward 

propagation, input data is passed through the network, layer 

by layer, to produce predictions. The network's predicted 

output is compared to the actual target values using a loss 

function, which measures prediction error. To improve 

accuracy, the error is propagated back through the network 

in a process called backpropagation, where the gradient of 

the loss function for each weight is computed. These 

gradients are used by an optimization algorithm, such as 

stochastic gradient descent (SGD) or Adam, to update the 

weights and biases, reducing the loss. This process of 

forward propagation, loss calculation, backpropagation, and 

weight adjustment is repeated for multiple iterations, known 

as epochs, until the loss is minimal. Throughout the training, 

the network's performance is validated using a separate 

validation dataset to monitor overfitting or underfitting, and 
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hyperparameters may be tuned accordingly. Finally, the 

trained model is evaluated on a test dataset to validate its 

generalization capability, ensuring prediction accuracy for 

new, unused data. 

2.2 Development of Database 

The magnitude of the dataset employed for training an 

Artificial Neural Network (ANN) profoundly influences its 

capacity to produce precise outcomes. Extensive datasets 

typically enhance model performance, enabling the artificial 

neural network to acquire more representative characteristics 

of the underlying data distribution. This enhances the 

model's capacity to generalize data by mitigating the impact 

of overfitting. Limited published experimental studies for 

concrete column confinement are insufficient to construct a 

highly accurate model. Therefore, instead of relying solely 

on experimental samples, this study implemented strength 

equations derived from previously published works. This 

approach provides a larger dataset for the confined 

compressive strength specimens related to different column 

sections with various dimensions and reinforcement 

configurations. The data generated was approximately 2,000 

column specimens.  These data are generated from five 

published mathematical prediction equations. The 

parameters considered from each equation and the range of 

values for each parameter are listed in Table 1. Eventually, 

these data were used to train and validate the ANN model. 

Statistical information for the numeric parameters of the 

generated data is given in Table 2.  

2.3 Normalization of Data 

 Data normalization plays a crucial role in neural 

network training by ensuring faster convergence and 

improved model accuracy, as it prevents features with larger 

scales from dominating the learning process and helps avoid 

the vanishing gradient problem during backpropagation [10]. 

 In the present study, six numerical features were 

considered: section dimension, unconfined compressive 

strength, ratio of vertical reinforcement, tie size, yield 

strength of tie, and vertical spacing between tie sets. These 

parameters are reformed into z-score normalization, which 

standardizes features by transforming them to have zero 

mean and unit variance [11]. The section shape and 

confinement configuration parameters represent discrete 

classes or categories rather than continuous numerical 

values. Given that neural networks operate exclusively on 

numerical inputs, appropriate encoding strategies were 

implemented. For section shape, a one-hot encoding 

approach was employed, representing the variable as a 

binary vector of dimension two [12]. For the confinement 

configurations, an embedding layer [13] was implemented 

instead of a one-hot encoding method. This approach 

avoided the need for a seven-dimensional vector 

representation that could have led to overfitting. The 

embedding technique enabled a more efficient dimensional 

representation while maintaining the inherent relationships 

between configuration categories. 
 

Table 1: Range of parameters studied in adopted analytical research 
 

Study 

Concrete Parameters Reinforcement Parameters 

Section 

Shape 

a 

Section 

dimension 

b (mm) 

Unconfined 

compressive 

strength 

(Mpa) 

Longitudinal 

reinforcement 

ratio (%) 

Transverse 

rebar size 

(mm) 

Transverse 

reinforcement 

yield strength 

(Mpa) 

Vertical 

spacing of 

ties (mm) 

Confinement 

configuration 

c 

Sheikh et al. [1] S 305 [31, 41] [1.70, 3.70] [3.2, 10] [255, 589] [25, 100] B, C, D, E 

Mander et al. 

[2] 
S, C 500 [24, 32] [1.20, 3.70] [10, 16] [307, 340] [35, 120] G 

Razvi [4] S, C 250 [50, 105] [1.30, 3.90] [6, 12] [400, 1000] [40, 135] A, B, C, F, G 

Bing et al. [5] S, C 240 [60, 72] [0.80, 1.60] 6 445 [20, 65] A, B, G 

Yong et al. [3] S 152 [83.5, 93.5] 1.36, 2.72 3.2 496 [25.4, 152] B 

a. 'S' stands for square sections, while 'C' stands for circular sections. 

b. For square sections, the dimension indicates the side length, while for circular sections, it indicates the diameter. 

c. Schematic representations of different transverse reinforcement configurations. 
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Table 2: The statistical details of the database 

 

Parameter Unit Min. Max. Avg. St. Deviation 

b mm 300 600 413.2 109.6 

fc′ MPa 25 85 50.8 21.0 

ρ % 1 3.6 2.4 0.8 

Φtie mm 8 12 10.0 1.6 

fyh MPa 360 420 390.0 30.0 

s mm 100 200 150.0 50.0 

 

2.4 Determination of Optimum ANN architecture 

The developed ANN model utilized a multilayer feed-

forward backpropagation (MLFFBP) algorithm [10]. From 

the 2000 column sections generated, 80% (1600 specimens) 

were selected for training, while the remaining 20% (400 

specimens) were used for validation. The model was then 

verified using 94 experimental samples obtained from the 

studies that had developed the strength prediction equations 

used in this research. 

To enhance model generalization and mitigate 

overfitting, two regularization techniques were implemented. 

The first technique employed was Dropout, which 

stochastically deactivates neurons and their corresponding 

connections within each layer during the training phase, 

using a predetermined probability p [14]. The second 

approach incorporated both L1 and L2 regularization 

methods termed Lasso and Ridge regularization, 

respectively, which augment the loss function with penalty 

terms to constrain model complexity [15]. 

The predictive performance of the model was evaluated 

using two distinct metrics. The primary metric, Mean 

Squared Error (MSE), shown in Equation 2, served as the 

loss function during the training process. The gradient of this 

loss function guided the iterative optimization of the model 

parameters across training epochs, to minimize the error. 

Additionally, Mean Absolute Error (MAE), presented in 

Equation 3, was employed as a supplementary performance 

metric to provide comprehensive monitoring of the model's 

predictive capabilities. 

     
 

 
∑ [     ]

  
                                                        (2) 

     
 

 
∑ |      |

 
                                                        (3) 

 

In Equations 2 and 3, T represents the ground truth 

(target) values, O denotes the model-predicted outputs 

generated by the artificial neural network, and n signifies the 

total number of samples in the dataset.   

 Through systematic hyperparameter optimization, 

the optimal ANN architecture was determined. The network 

consists of a single hidden layer comprising 20 neurons, with 

a Leaky ReLU activation function. The output layer employs 

a linear activation function, which is suitable for regression 

tasks. To mitigate overfitting, dropout regularization with a 

rate of 0.3 in the hidden layer was implemented, along with 

L1 and L2 regularization λ1 = 0.003 and λ2 = 0.002, 

respectively. The confinement configuration feature was 

represented using a 4-dimensional embedding space. The 

model was trained using the Adam optimization algorithm 

for a maximum of 50 epochs, with an early stopping 

mechanism implemented to prevent overfitting. If no 

improvement in performance is observed for 10 consecutive 

epochs, the training is terminated, thereby ensuring 

computational efficiency while maintaining model 

performance. 

The optimized ANN model demonstrated robust 

predictive performance across both training and validation 

sets, as evidenced by the convergence patterns shown in 

Figures 3 and 4. The model achieved a Mean Squared Error 

(MSE) of 0.008 on the validation set, while maintaining a 

comparable MSE of 0.012 on the training set, indicating 

minimal overfitting. As illustrated in Figure 3, both training 

and validation MSE curves exhibit smooth convergence, 

with rapid initial improvement followed by stable 

performance after approximately epoch 15. The Mean 

Absolute Error (MAE), which was monitored during training 

and depicted in Figure 4, reached 0.03 on the validation set, 

compared to 0.05 on the training set. The close alignment 

between training and validation metrics (training MAE: 

0.051, validation MAE: 0.03) and the parallel convergence 

patterns observed in both figures further confirm the model's 

generalization capabilities. These results, along with the 

consistent downward trends in both error metrics, indicate 

that the implemented regularization strategies and early 

stopping mechanism effectively prevented overfitting while 

maintaining strong predictive performance. 

The final trained values of the connection weights and 

biases for the optimized artificial neural network (ANN) 

model are presented in Tables 2 and 3. Additionally, Table 4 

provides a detailed representation of the trained embedding 

layer, which is utilized to encode the confinement 

configuration. 
 

 

 
Figure 3: Mean Square Error (MSE) for training and validation sets over 

epochs 
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Table 3: Connection weights between normalized input layer neurons and hidden layer neurons, including biases for hidden layer neurons 

 

 
 

Table 4: Connection weights between hidden layer neurons and the output neuron, including the output neuron's bias 

 

 
 

Table 5: Embedding vectors learned for each confinement configuration (A–G). Each row represents a vector in the embedding space corresponding to a 

unique categorical configuration. 

 

Confinement  

Configuration 
Dimension 1 Dimension 2 Dimension 3 Dimension 4 

A -0.18277 -1.51719 -0.14402 0.00237 

B -0.02557 -0.02871 -0.14792 0.17486 

C 0.11524 0.65162 -0.08318 -0.04109 

D 0.28275 1.30981 -0.14464 0.13155 

E 0.06467 0.29982 -0.03699 0.13176 

F 0.15161 -0.03037 -0.17765 0.13342 

G 0.28572 0.04016 -0.24829 0.16776 

 

 

 
Figure 4: Mean Absolute Error (MAE) for training and validation sets over 

epochs 

3. Results 

 The performance of the developed ANN model was 

evaluated by comparing its predictions against experimental 

measurements of effective confinement [1], [2], [3], [4], [5], 

as illustrated in Figure 5. The comparison reveals a strong 

correlation between the ANN predictions and experimental 

data, with data points generally clustering around the identity 

line (y=x), indicating good predictive accuracy. The model's 

performance is quantitatively assessed through error metrics, 

yielding a Mean Squared Error (MSE) of 0.01 and a Mean 

Absolute Error (MAE) of 0.07. These relatively low error 

values confirm the model's capability to capture the 

underlying patterns in the experimental data. While some 

data points exhibit deviation from the perfect prediction line, 

the overall distribution suggests that the ANN model 

provides reliable predictions of effective confinement. 
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Figure 5: Comparison of ANN-predicted vs. experimental effective 

confinement values 

4. Solved Example 

This section demonstrates the calculation of confined 

compressive strength using two distinct methodologies: an 

established mathematical formula derived from Bing et al. 

and the developed Artificial Neural Network (ANN) model. 

The application utilizes an experimental specimen reported 

in Mander's study [2], which is a circular cross-section with 

a diameter of 500 mm, a concrete cover of 25 mm, and a 

characteristic concrete strength of 29 MPa. The specimen is 

longitudinally reinforced with 12 - 16 mm rebars and 

laterally confined using a 12 mm diameter spiral 

reinforcement with a pitch of 103 mm, with a yield strength 

of 340 MPa. The experimentally measured confined 

compressive strength for this specimen was reported to be 40 

MPa. 

4.1 Mathematical Model Application 

The mathematical approach employs Bing's [5] equation 

for strength calculation, which is demonstrated below: 

   
(          )

 

     
 = 0.91 

  
             = 1.55 MPa 

      
 [            √      

  
 

  
   

  
 

  
 ] = 36.8 MPa. 

4.2 ANN Model Prediction 

The developed ANN model provides an alternative 

computational approach. The ANN implementation is 

operationalized through software that allows users to input 

section parameters, eliminating the need for manual 

calculations. Error! Reference source not found. illustrates 

the computational process occurring within each neuron, 

utilizing the weights and biases presented in Tables Error! 

Reference source not found.Error! Reference source not 

found. and applying Equation 1 for neuron output 

determination. 

The ANN model predicts a confined strength ratio of 1.42, 

corresponding to a confined compressive strength of 41.18 

MPa. This result demonstrates improved accuracy compared 

to the mathematical model prediction of 36.8 MPa when 

evaluated against the experimental measurement of 40 MPa. 

 

 
 

Figure 6: Neural network computation flowchart 

 

5. CONCLUSION 

This study presented the application of an artificial neural 

network (ANN) for predicting the confined compressive 

strength of square and circular concrete columns. The input 

variables for the ANN included 11 physical and mechanical 

properties of confined concrete specimens and 7 different 

reinforcement configurations. Through extensive trials, the 

optimal ANN architecture was determined. The performance 

of the developed ANN model was evaluated by comparing 

its predictions to experimental results.  

1. The study uses artificial intelligence to predict the 

lateral confinement ratio for concrete columns. 

2. An artificial neural network (ANN) model was 

developed based on diverse parameters such as section 

geometry, material strengths, and reinforcement 

confinement details. 

3. The ANN model was validated against experimental 

data, achieving high accuracy with a mean square error 

of 0.01 and a mean absolute error of 0.07. 

4. The approach effectively bridges the gap between 

theoretical models and experimental results. 

5. This method offers a practical tool for estimating 

confinement effects without requiring complex 

formulas or laboratory testing. 
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