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Abstract: An artificial neural network (ANN) system was developed and implemented for analyzing and simulating the 

process parameters concerning -aluminum alloy 6061 and pure copper - dissimilar welded joints for their mechanical 

properties. In the present study, 2.2 mm thick Aluminum alloy 6061 and 1.4 mm thick pure copper are welded using the 

friction stir spot welding process. The process parameters involved in welding are the tool rotation speed, plunge depth, 

and dwelling time. There exists an optimized level of the parameters of friction stir spot welding (FSSW) for the highest 

shear load of AA 6061 and pure copper lap-welded joints, predicted as 20 seconds with a plunge depth of 0.2 mm at 

2000 rpm. The shear load increases with a further increase in the plunge depth for a 15 seconds dwell time and 2000 

rpm. The network of 10 neurons achieves the best performance with the highest validation and test correlation 

coefficients, whereas the network of 20 neurons may be overfitting or underfitting, as suggested by its lower training 

correlation coefficient. 
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1. INTRODUCTION 

Friction stir spot welding (FSSW) has become a popular 

alternative process recently for spot welding technologies 

[1,2]. FSSW has received many industries' attention, of 

which the automotive industry is the most [3,4]. FSSW is a 

variant of friction stir welding and has many advantages in 

comparison to other techniques of welding. It has been 

widely recognized for its economic benefits, particularly its 

lower investment and maintenance costs when compared to 

other welding techniques, as noted in several studies [5-7]. 

Welding dissimilar metals means joining two different 

metals, where a transition layer will be made having different 

properties and microstructure than the base metal. Compared 

with welding the same material, welding dissimilar metals 

has a more complex welding mechanism and operation 

technology [8]. 

Aluminum alloys and commercial copper alloys are 

extensively used in the manufacturing of aircraft and 

automobiles due to their excellent strength, high corrosion 

resistance, superior formability, and ease of machinability [9-

13]. In the aircraft industry, aluminum alloys and pure copper 

alloys are used for electrical components and heat 

exchangers, resulting in improved electrical conduction and 

heat dispersion. In the automobile industry, battery systems 

and cooling solutions are enhanced, leading to better 

performance in power electronics and PCBs, where heat 

management is more effectively managed. In renewable 

energy, solar panels and wind turbines are optimized, 

allowing for efficient energy transfer at a reduced weight. 

These are the applications where aluminum bonding to 

copper is critical for enhancing performance and efficiency 

across sectors. However, these alloys also are a significant 

problem in design and welding because the melting points of 

aluminum and copper are very different, which reduces the 

effective use of the conventional fusion welding processes 

[14]. Consequently, these dissimilar joints are riveted. FSSW 

has also been used extensively in the fabrication of body 

panels in automobiles and is efficient for welding aluminum 

and copper in aluminum car bodies [15-18].  

Several artificial intelligence (AI) applications and the 

development of models in artificial neural network (ANN) 

for engineering areas have focused on developing many 
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studies in the fields of prediction, tracking, and control of 

manufacturing processes [19]. Dehabadi et al. [20] reported 

that two feed-forward backpropagation artificial neural 

network (ANN) techniques were employed to model and 

predict the Vickers microhardness of AA6061 friction-stir 

welded plates. The mean absolute percentage error (MAPE) 

during the training process for both ANN was less than 

4.83%, indicating that the models' predictions exhibited an 

acceptable deviation from the actual microhardness values. 

Bîrsan et al. [21] concluded that a trained neural network can 

be used to predict the values of temperatures and stresses 

under specified conditions of pin penetration, rotation speed, 

and holding time.  

 

2. EXPERIMENTAL WORK  

2.1 Material and Methodology  

In this Investigation, the dissimilar materials that joined by 

FSSW are the aluminum alloy 6061 and pure copper. The 

chemical composition of AA 6061 alloy and pure copper 

plates been given in Table 1. The shape of the rotational tool 

used in the investigations, having a flat shoulder and 

cylindrical threaded probe, is fabricated from H13 hot-

worked tool steel, as shown in Fig. 1. The tool has a 

cylindrical shoulder with a diameter of 10 mm and a 

threaded probe with a diameter of 4 mm. The input 

parameters of the system include the plunge depth, dwell 

time, and rotation speed as shown in Table 2. The 

mechanical properties of AA 6061, pure copper plates and 

H13 material are listed in Table 3. Welding experiments 

with process parameters is shown in Table 4. The welding 

experiments are conducted via Harvad CNC Automatic 

Machine at different welding parameters. Vertical plunge 

rate of 150 mm/min is applied during the insertion of the 

tool in the overlapped plates. The Aluminum plate is placed 

on the upper side and the copper plate is placed on the 

bottom side of the process due to lower thermal 

conductivity of Aluminum plate that produced sufficient 

heat for better mixing of the joint [22-23]. The dissimilar 

plates are prepared to the welding process by fixing plate 

made from steel 37. The plates are supported by two 

pressure bars to prevent lifting the lap plates. The 

configuration of FSSW process consists of fixtures, AA 

6061 plates, pure copper plates, fixing bolts, pressure bars 

and rotational tool as illustrated in Fig. 2. The weld lap shear 

load tests are performed on a SHIMADZU UH-F1000KNI-

up to 1000KN test load- universal testing machine. The 

tensile shear experiments are performed using specimens of 

the given dimensions according to ISO 14273:2016 [24], as 

shown in Fig. 3. For thicknesses ratio of the two sheets 

exceeds 1.4mm, shim plates must be used to clamp the test 

specimen securely in the grips of the tensile shear testing 

machine as shown in Fig. 4. Tests are carried out at a 

constant cross head of 1 mm/min. The tensile shear force 

measured is the average value obtained from tensile tests 

conducted on three specimens for each welding condition. 

TABLE 1. AA 6061 and Pure copper chemical compositions. 

Wt% Cu Ag As Sb S P Fe Ni Mn 

Pure 

copper 
99.95 0.001 0.002 0.006 0.002 0.001 0.005 0.002 0.001 

Wt% Si Fe Cu Mn Mg Cr Zn Ti Al 

AA 6061 0.69 0.6 0.28 0.006 1.03 0.15 <0.001 0.014 Remaining 

 

TABLE 2. Welding process parameters. 

Process parameter Level 1 Level 2 Level 3 

Rotational Speed ω (rpm) 1800 2000 2200 

Dwell Time  T (sec) 10 15 20 

Plunge Depth PD (mm) 0 0.1 0.2 

 

TABLE 3. Mechanical properties of AA 6061, pure Copper plates and H13 material. 

Material  AA 6061 Pure Copper H13 Tool Steel 

Tensile strength, Mpa 260 315 1955 

Yield strength, MPa 206 280 1560 

Hardness 67 Hv 42 Hv 653 Hv 
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a)                                                b)  

FIGURE 1. Rotational tool dimensions (a) schematic drawing (b) machined tool.  

 

TABLE 4. Welding experiments with process parameters. 

Specimen no Rotational speed (rpm) Dwell Time (sec) Plunge Depth (mm) 

1 1800 10 0 

2 1800 15 0 

3 1800 20 0 

4 1800 10 0.1 

5 1800 15 0.1 

6 1800 20 0.1 

7 2000 10 0 

8 2000 15 0.1 

9 2000 20 0.2 

10 2000 10 0.1 

11 2000 15 0.2 

12 2000 20 0 

13 2200 10 0.1 

14 2200 15 0.1 

15 2200 20 0.1 

16 2200 10 0.2 

17 2200 15 0.2 

18 2200 20 0.2 

 

 

FIGURE 2. Friction stir spot welding parts.  

a) Fixtures b) AA 6061 plate c) Pure copper plate d) Bolt e) Pressure Bar f) Rotational tool. 
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FIG 3. Tensile shear specimen. 

 
 FIG 4. Tensile shear test configuration a) grip b) shim. 

 

2.2 Back Propagation Neural Network (BPN) 

Neural systems are computational models that mimic the 

functions of biological neural networks, comprising neurons, 

and are utilized for various complex tasks across different 

applications. These systems include three layers: the input 

layer, the hidden layer, and the output layer. The input layer 

handles process parameters such as rotational speed, plunge 

depth, and dwell time. According to Fig 5, the hidden layer 

contains 5, 10, or 20 neurons. The output layer represents the 

tensile shear force of the welded joints. This model operates 

using feed-forward back propagation neural networks.  

 

3. RESULTS  

3.1 Tensile Shear Force Results  

AA 6061 and pure copper plates have been successfully 

joined using spot lap welding. Some examples of these welds 

are shown in Fig. 5. The visual inspection of welded 

specimens’ area is presented. The lack of penetration defect 

observed in specimen condition 4 - number 3 (A4-3) and 

condition 4- number 6 (A4-6) is attributed to low plunge 

depth caused by the vibrations of the rotational tool in the 

CNC machine. The excess flashes occurred due to excessive 

heat generation because of the higher rotational speed. The 

top view of the spot-welded joints reveals that the extruded 

material flashing to the sides of the shoulder projection is 

nearly identical. Circular indentations caused by the shoulder 

projection are observed under various applied parameters 

[25]. Excessive flash is minimized by the meticulous 

selection of FSSW parameters, informed by insights from 

previous studies [26]. The tensile-shear force values of the lap 

joints are influenced by changes in process parameters. The 

maximum tensile shear force, measured at 4.13 KN, is 

achieved with a rotational speed of 2000 rpm, a plunge depth 

of 0.2 mm, and a dwell time of 20 seconds. This is because of 

the improved mixing between aluminum and copper. The 

rotational speed of 2000 rpm contributes to better heat input, 

while the dwell time allows sufficient time for stirring the 

joint.  

 
FIG 5. Visual inspection of weld specimens at 1800 rotational 
speed , 10 seconds dwell time and 0.1mm plunge depth with a) 

lack of penetration b) excess flashes. 

 

Contrarily, the minimum tensile shear force, 2.01 KN, is 

obtained with a tool rotational speed of 2200 rpm, a plunge 

depth of 0.1 mm, and a dwell time of 15 seconds. The 

combination of high rotational speed and shallow plunge 

depth likely results in insufficient heat generation and 

inadequate material mixing, leading to a weld with low shear 

strength [27]. Garg et al. [28] reported that the lap shear force 

of Cu-AA6061 joints decreased with increasing test 

temperature when no preheating was used. However, for 

joints that underwent preheating, the lap shear force increased 

from 1.63 KN at a 25°C test temperature to 2 KN at 50°C. It 

then decreased to 1.8 KN at a 100°C test temperature. 
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 It is observed that at 1800 rpm and zero plunge depth, the 

tensile shear force initially increases with dwell time from 10 

to 15 seconds, then decreases when the dwell time reaches 20 

seconds, as illustrated in Fig. 6. This is because the longer 

dwell time allows for better heat generation and material 

mixing, leading to a stronger weld. However, when the dwell 

time extends to 20 seconds, the tensile shear force decreases. 

The extended dwell time may lead to overheating and 

potential defects such as grain coarsening or excessive 

softening of the material, which can weaken the weld. Chu et 

al. [29] reported that the material flow behavior becomes 

unstable at shorter dwelling times. The shear force varies with 

changes in rotational speed. As rotational speed increases 

from 1800 rpm to 2000 rpm, the shear force rises from 2.4 

KN to 2.98 KN. This increase is due to improved heat 

generation and material mixing, leading to a stronger weld. 

However, when the rotational speed is further increased to 

2200 rpm, the shear load decreases to 2.7 KN. This reduction 

is likely caused by excessive heat, which can result in defects 

such as voids or material degradation, thereby weakening the 

weld. This trend is depicted in Fig. 7. Additionally, it is found 

that the shear lap force increases as the plunge depth values 

rise. The optimum tensile shear force is shown to be the 

highest in Fig. 8. Increasing the plunge depth enhances the 

downward force, thereby improving heat input and promoting 

better material flow between aluminum and copper. This 

results in improved mixing within the welded joint and an 

increase in the shear load of the joint. Piccini et al. [30] 

investigated the effect of plunging depth during the FSSW 

process and the impact of changing the position of the alloys 

in superimposed joints when welding AA5052 and AA6063 

sheet specimens. They found that the fracture load increased 

with greater tool plunging depth for both configurations. 

 
FIG 6. Effect of dwell time on shear force at 1800 

rpm- zero mm plunge depth. 

 

FIG 7.  Effect of rotational speed on shear force at 10 seconds 

dwell time- 0.1 mm plunge depth. 

 

FIG 8.  Effect of plunge depth on shear force at 2000 

Rpm- 15 seconds dwell time. 

3.2 Training the Network 

In the training process of artificial neural networks (ANN), 

various parameters were assessed. For all cases in this study, 

feed-forward artificial neural networks are utilized in the 

models. The process included database collection, analysis of 

the data, training of the neural network, testing of the trained 

network, and using the trained NN for simulation and 

prediction. The MATLAB platform is employed for training 

and testing the ANN. During the training phase, an increased 

number of neurons in the hidden layer are used to accurately 

define the output. Training of the network: It uses the 

Levenberg-Marquardt (LM) back-propagation algorithm. 

The tan-sigmoid activation functions reach the input as well 

as the output of the hidden layers in this study. Kulekci et al. 

[31] reported that the dataset of study the neural network 

model provides predictions of tensile shear strength that are 

closer to the experimental values compared to those obtained 

through regression analysis. Table 5 indicates the tensile 

shear force between the measured and predicted tensile shear 

force results of 5, 10, and 20 neurons, along with the 

associated error percentages as shown in Fig. 9. There are 18 

samples used in neural system test data. Next, through the 

hidden layers, 5, 10, and 20 neurons are implemented in the 

neural system. It consists of three original data splits, and 

training, validation, and test data are 60%-20%-20%, respectively.  
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FIG 9. Developed neural networks with a) 5 b) 10 c) 20 

neurons of hidden layers. 

Inputs and outputs have been normalized in the range of 0–1. 

The formulation of the hidden and output layers using the 

‘Tan-sigmoid’ transfer function is employed to predict the 

tensile shear force values and is responsible for connecting 

the input and output nodes within the network. Equation (1) 

shows the Tan-sigmoid transfer Function [32]. 

Equation (1) : 

𝐹(𝑥) =
2

1+𝑒−2𝑥
− 1                                                (1) 

After successfully training the network, it was subjected to 

testing using established test data. Statistical techniques were 

employed to assess the outcomes generated by the network. 

The occurrence of errors is a common phenomenon during 

the training of networks, hence the determination of the 

Coefficient of Correlation (R) and the mean square error.  

 

TABLE 5. Predicted values of neural networks shear load with welding process parameters. 

 

Rotationa

l speed 

(rpm) 

Dwell 

Time 

(sec) 

Plunge 

Depth 

(mm) 

Shear Force (KN) 

Measured 5 neurons 10 neurons 20 neurons 

1 2 3 
aver

age 
value Error% value Error% value Error% 

1800 10 0 1.29 3.06 2.48 2.28 2.5245 10.72 2.3112 1.37 2.2679 -0.53 

1800 15 0 3.26 3.33 4.23 3.60 3.5917 -0.23 3.5886 -0.32 3.9558 9.88 

1800 20 0 3.01 3.01 3.42 3.15 3.095 -1.75 3.1476 -0.08 3.1702 0.64 

1800 10 0.1 3.12 2.06 2.08 2.42 2.4562 1.50 2.3792 -1.69 3.8892 60.71 

1800 15 0.1 2.16 2.09 3.03 2.43 2.4542 1.00 2.4246 -0.22 2.4257 -0.18 

1800 20 0.1 3.21 3.15 2.08 2.81 2.8719 2.20 2.8107 0.02 2.8111 0.04 

2000 10 0 1.73 3.32 2.5 2.52 2.4572 -2.49 2.5093 -0.42 2.5212 0.05 

2000 15 0.1 1.84 2.74 2.19 2.26 2.2569 -0.14 2.2547 -0.23 2.0176 -10.73 

2000 20 0.2 4.17 4.04 4.18 4.13 3.6995 -10.42 2.9289 -29.08 4.1264 -0.09 

2000 10 0.1 2.56 2.68 3.71 2.98 2.4538 -17.66 2.3284 -21.87 2.011 -32.52 

2000 15 0.2 2.26 2.42 2.83 2.50 2.4997 -0.01 2.3927 -4.29 2.5138 0.55 

2000 20 0 1.71 2.96 3.83 2.84 2.8237 -0.57 2.8301 -0.35 2.0104 -29.21 

2200 10 0.1 2.16 4.18 1.77 2.70 2.8955 7.24 2.6772 -0.84 2.0318 -24.75 

2200 15 0.1 1.79 1.94 2.29 2.01 2.0204 0.52 2.0906 4.01 2.2641 12.64 

2200 20 0.1 3.78 3.68 3.87 3.77 3.7733 0.09 3.6169 -4.06 3.6789 -2.42 

2200 10 0.2 3.78 1.09 2.52 2.46 2.0108 -18.26 2.522 2.52 3.7776 53.56 

2200 15 0.2 3.13 2.63 3.37 3.04 2.012 -33.82 3.0601 0.66 2.9964 -1.43 

2200 20 0.2 2.56 2.39 2.10 2.35 2.3484 -0.07 2.9129 23.95 4.127 75.62 

 

3.3 Regression Analysis and Performance Curve 

Figure 10a shows the regression analysis for a hidden layer 

network with 5 neurons. The training data demonstrates an 

excellent fit (R=0.99795) with the data points closely 

following the regression line. The validation data also shows 

a reasonable fit (R=0.85594), indicating good performance. 

However, the test data reveals a poor fit (R=-0.68559), 

which may suggest overfitting, where the model performs 

well on training data but fails to generalize to new data. 

Overall, the model's performance is decent (R=0.85033), but 

the disparity between the training and test results highlights 

the need for further improvement to avoid overfitting and 

ensure better generalization. Figure 10b shows the 

regression analysis for a hidden layer network with 10 
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neurons. The training data shows a moderate fit 

(R=0.84057), while the validation data demonstrates an 

excellent fit (R=0.99463), indicating strong generalization. 

The test data also exhibits a good fit (R=0.91836), 

confirming the model's effectiveness on new data. However, 

the overall R value of 0.78637 suggests some inconsistencies 

across the entire dataset, indicating potential areas for further 

model refinement. Figure 10c shows the regression analysis 

for a hidden layer network with 20 neurons. The training 

data shows a weak fit (R=0.2849), while the validation data 

exhibits a strong fit (R=0.92197), indicating good 

generalization. However, the test data shows a poor fit (R=-

0.60126), suggesting overfitting. The overall R value of 

0.47653 indicates inconsistencies across the dataset, 

signaling the need for model refinement. 

The network with 10 neurons shows the best overall 

performance, exhibiting the highest validation and test 

correlation coefficients, while the network with 20 neurons 

indicates potential overfitting or underfitting issues, as 

evidenced by the lower training correlation coefficient. 

 

a) 

 

 

 

 
c) 

FIG10. Regression analysis for a) 5, b) 10 and c) 20 neurons 

hidden layer network. 

 

Figure 11a shows the performance curve for a network with 

5 neurons in the hidden layer. The best validation 

performance is achieved at epoch 8 with an (mean squared 

error) MSE of 0.16662. Despite a steady decrease in training 

error, the validation and test errors remain relatively high, 

indicating possible underfitting due to the limited number of 

neurons. Figure 11b shows the performance curve for a 

network with 10 neurons, where the MSE curve over just 4 

epochs reveals a rapid decrease in training error, with both 

validation and test errors stabilizing quickly. This results in 

an exceptionally low validation MSE of 0.0026141 at epoch 

0, indicating highly effective training. Figure 11c illustrates 

the performance curve for a network with 20 neurons. The 

best validation performance is recorded at epoch 0 with an 

MSE of 0.33446. The significant gap between the training 

error and the validation/test errors indicates overfitting, 

where the model fails to generalize well to new data. 
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C ) 

FIG 11. Performance curves for a) 5, b) 10 and c) 20 neurons 

hidden layer. 

 

 

 
FIG 12. Comparison between experimental and predicted 

values of shear load at a) 5 neurons, b) 10 neurons and             
c) 20 neurons of hidden layer 

 

Figure 12a shows a comparison between experimental and 

predicted shear load values using 5 neurons hidden layer. 

The scatter plot reveals a reasonable correlation, with the 

predicted values generally following the trend of the 

measured values, although some deviations are observed, 

particularly at higher shear loads. Figure 12b illustrates a 

comparison between the experimentally measured shear 

load values and those predicted by the model with 10 

neurons hidden layer. The correlation is stronger, with 

predicted values closely matching the measured ones, 

indicating a better fit and improved model performance. The 

regression line aligns more closely with the ideal fit, 

suggesting that this configuration better captures the 

underlying relationship. Figure 12(c) presents the 

comparison between experimental and predicted shear load 

values using 20 neurons hidden layer. In this case, the 

correlation is less consistent, with greater variability and 

more significant deviations from the measured values, 

especially at lower shear loads. The regression line indicates 

a weaker fit, which might suggest issues like overfitting or 

underfitting. 

The network with 10 neurons shows the best performance, 

achieving the highest validation and test correlation 

coefficients, while the 20-neuron network exhibits potential 

overfitting or underfitting, as reflected by its lower training 

correlation coefficient. Jo et al. [33] concluded that FSSW 

of 1.6-mm thick AA6061-T6 plates resulted in an 

experimental tensile shear force of 4.0 kN, with a predicted 

value of 4.147 kN, leading to a 3.675% error. The hardness 

showed a 3.197% error, with an experimental value of 62 Hv 

and a predicted value of 60.018 Hv. Abdullah et al. [34] 

reported that a mean relative error (MRE) of approximately 

3.42% was observed in the developed ANN model for 

predicting the tensile shear load (TSL) of AA7020-T6 lap 

joints. Nugroho et al. [35] developed an ANN network that 

proved to be the most accurate model for predicting the 

maximum tensile shear load compared to other models, with 
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an MSE of 0.00918 and an average error of 6.99%. 

 

4. CONCLUSIONS  

In this study, AA6061 and pure copper plates were welded 

using friction stir spot welding at varying speeds (1800, 

2000, 2200 rpm), dwell times (10, 15, 20 seconds), and 

plunge depths (0, 0.1, 0.2 mm). Tensile-shear tests were 

performed to determine the optimal shear force of the lap 

joints. An ANN model was developed to train, test and 

predict the results.  

Based on the obtained results, the following conclusions can 

be outlined: 

1- The highest shear load for AA 6061 and pure copper 

lap joints was achieved at 2000 rpm, 20 seconds dwell 

time, and a 0.2 mm plunge depth due to better heat 

input and sufficient mixing between aluminum and 

copper.  

2- At 2000 rpm and a 15 second dwell time, the shear load 

increased from 2.11 KN to 2.5 KN as the plunge depth 

increased from 0 to 0.2 mm. The greater plunge depth 

enhanced downward force and heat input, resulting in 

a higher shear load. 

3-  At 1800 rpm with zero plunge depth, the shear load 

increased to 3.6 KN at 15 seconds but dropped to 3.14 

KN at 20 seconds, as prolonged dwell time caused 

overheating and weld weakening. 

4-  The network with 10 neurons provided the best fit for 

predicting shear loads, while 5 neurons gave a 

reasonable fit with minor deviations. However, using 

20 neurons led to overfitting or underfitting, reducing 

prediction accuracy. Increasing neurons improved 

performance only up to a certain point. 
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