
 

ENGINEERING RESEARCH JOURNAL (ERJ) 

Volume (53),Issue (4) 

October 2024, pp:119-124 

https://erjsh.journals.ekb.eg 

 

 

119 

Applying Minimum Travel Array on Twenty Traveling 

Salesman Problems 

 
Mohamed Eleiche  

 

Construction Engineering department, Faculty of Engineering, Egyptian Russain University 
 

E-mail address : mohamed.eleiche@gmail.com 

 

Abstract: The exact solution for the Traveling Salesman Problem (TSP) is a main research topic with high priority and importance. 

This article gives insight analysis to understand this important problem by studying its Minimum Travel Array characteristic. There 

are symmetric and asymmetric TSP. This article selected ten problems from each type and computed the Minimum Travel Array for 

each. Then, the sum of the minimum cost of arriving at the node and the sum of the minimum cost of departing from it were computed 

and compared to the Best-Known solution of each problem. There is a distinct difference between symmetric and asymmetric TSP. 

This is clear in the results of this research. The mean of both sums is a reliable lower bound for symmetric graphs, and the greater from 

these sums is a practical lower bound for asymmetric graphs. In both cases, the Minimum Travel Array provides a deep understanding 

of each TSP and is a first step towards its solution. The TSPLIB is the source for the twenty problems analyzed in this article. The 

program used and the associated data are freely available online. 
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1. Introduction 

The traveling salesman problem (TSP) is an optimization 

famous problem in the theory of graphs and has diversity of 

applications in engineering and other disciplines. It is 

mathematically defined by a number of (n) cities with the 

length of travel between each pair of them. The tour with the 

least cost to visit each city only once from the starting point 

and returning back to it again (Applegate, et al., 2006). The 

travel cost is symmetric if traveling from city a to city b is the 

same as the cost from b to a. If they are different then it is 

asymmetric. The TSP is a mathematical full graph with (n) 

nodes. TSP is a prototype of hard combinatorial optimization 

problem where the possible solutions are (n-1)! and is 

considered NP-hard and NP-complete (Jungnickel , 2008). 

There is not an exact algorithm to compute the optimal tour 

deterministically. There are modern applications for TSP such 

as the Drone-Assisted Variable Speed Asymmetric TSP 

which considers variable flight times for the drone 

(Campuzano, et al., 2023) and the spherical asymmetric 

multiple TSP where all cities and paths exist on the three-

dimension sphere (Huang, et al., 2023).  

This research aims to analyze the Minimum Travel Array 

(Ϣ) property of the TSP in both symmetric and asymmetric 

cases, apply it on selected samples from the TSPLIB, and 

discuss the results.  

The traveling salesman problem library (TSPLIB) is a 

cornerstone in the history of this important and iconic 

problem. Gerhard Reinelt  created it in 1990 (Reinelt, 1991). 

It is a rich resource for the TSP such as data for symmetric 

and asymmetric problems with size from 14 nodes up to 

85000 nodes, with their best-known solutions. Also, an 

outstanding reference for many researches exist in the 

TSPLIB. It is available on open access basis worldwide.  

2. Mathematical Background 

The TSP is modeled as a weighted complete directed 

graph G = (V, E), where (V) are the nodes with size (n), and 

(E) are the edges with size (n2). V = {1, 2, …, n}, and 𝐸 =
{(𝑢, 𝑣)| 𝑢, 𝑣 ∈ 𝑉} 𝑎𝑛𝑑 {𝑐𝑜𝑠𝑡(𝑢, 𝑣)  ∈   ℝ ≥ 0}  (Bondy & 

Murty, 1976). This research considers only edges with cost of 

positive values or zero. 

2.1 Input Data 

The accepted format for the program TSP_02 which 

computes Ϣ is given in Table 1. The array of the cost has the 

format [u, v, cost(u,v)], where (u) is the from-node of the edge, 

(v) is the to-node of the edge, and (cost(u,v)) is the cost of the 

edge. The data type of (u) and (v) is integer, while (cost) is a 

positive real number and may equals to zero. The cost array 

has a size of (3 n2) and its structure is shown in Table . It has a 

single row for each edge (u,v).  
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Table   1 The input cost array for the program 
 

2.2 Minimum Travel Cost for Each Node 

Each node has a unique characteristic, its own minimal 

travel cost. This means that each node i has very close node u 

to it, as shown in Figure 1, such that the cost of the edge (u,i) 

is the minimal cost to arrive to node i. Similarly, the node i 

has also a very close node v such that the cost of the edge (i,v) 

is the minimal cost to depart from node i. The path (u,i,v) is 

the minimal cost to travel through node i, there is no less cost 

than that. In some cases, there is one or more path with the 

same cost. In case of symmetric graph, by definition, the cost 

of the edge (i,j) is the equal to the edge (j,i) but in opposite 

direction, the path of (u,i,v) has the same cost of (v,i,u). The 

cost of the edge (u,i) is the minimum cost for edges ending by 

i, and the cost (i,v) is its second minimum. These two values 

can be achieved by one time sorting edges ending (or starting) 

by node i. 

This is not the case of asymmetric graph, where by 

definition the cost of the edge (i,j) is not equal to its opposite 

edge (j,i). The cost (u,i) is the minimum cost for edges ending 

by i, the cost (i,v) is the minimum cost for edges starting by i. 

Here, the solution needs two sorting operations. The first for 

edges ending by node i, and the second for edges starting with 

it. The complexity to find the minimum travel cost for 

symmetric TSP is O(n2), while for asymmetric TSP is O(2n2). 

 
Figure 1 Minimum travel cost for node i 

2.3 Minimum Travel Array (Ϣ) for the Graph 

The Ϣ is the main output of this algorithm. Its structure is 

[InCost, u, i, v, OutCost], where (InCost) is the cost of the 

edge (u,i), (u) is the incident node to node (i), (i) is the node 

of interest (1 ≤ i ≤ n), (v) is the outgoing node from node i, 

and (OutCost) is the cost of the edge (i,v). The size of Ϣ is (5 

n) (Eleiche, Markus 2010), and Table 2Error! Reference 

source not found. shows its structure. 

2.4 TSP_02 Program 

It is C++ program implemented to produce the minimum 

travel array (Ϣ) for any graph (Eleiche, 2020). The input data 

to the program must be in the format in Table 1.   

 

Table 2 Minimum Travel Array (Ϣ) 
 

InCost u i v OutCost 

… … 1 … … 

InCost u i v OutCost 

     

… … n … … 

Sum of 

InCost 
   

Sum of 

OutCost 

3. Data and Methodology 

A list of twenty graphs is selected from the TSPLIB to 

compute the Min Travel Array for each of them. Ten graphs 

are symmetric with node size from 42 up to 1032 nodes. 

Another ten graphs are asymmetric ranging from 17 to 443 

nodes. In Error! Reference source not found., the name and 

size of each graph is presented, aside with its best-known 

solution.  

Table 3 Input data for graphs (Source: TSPLIB) 

 

Type 
ID 

Name Size Best 

Solution 

Symmetric 

1 US42 42 699 

2 hk48 48 11461 

3 brazil58 58 25395 

4 gr120 120 6942 

5 si175 175 21407 

6 brg180 180 1950 

7 si535 535 48450 

8 pa561 561 2763 

9 college647 647 47149705 

10 si1032 1032 92650 

Asymmetric 

1 br17 17 39 

2 ftv35 36 1473 

3 p43 43 5620 

4 ry48 48 14422 

5 ft53 53 6905 

6 ftv70 71 1950 

7 kro124 100 36230 

8 ftv170 171 2755 

9 rbg323 323 1326 

10 rbg443 443 2720 

 

The TSPLIB stores the cost data for each graph in different 

format. These data are downloaded then presented in the 

format described in Table , which is the input format for the 

u v Cost 

1 1 ∞ 

… … … 

1 n … 

2 1 … 

n n ∞ 
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program TSP_02. The output file includes detailed data about 

the computation, however Ϣ is only extracted in a separate 

file. This process starts from downloading the data, convert its 

format, apply the program and extract Ϣ for each graph is 

represented in Figure 2 . 

The data repository includes the program TSP_02 source 

code and its executive file, the original data from TSPLIB, the 

input file, the output file and Ϣ for each graph. 

4. Results 

The main result is the minimum travel array (Ϣ) for each 

problem as presented in Table 4. This table includes, in 

addition to the columns of Error! Reference source not 

found., the Min Incident column which is the sum of the 

minimal cost edges to arrive to each node in the graph, while 

the Min Outgoing column is the sum of the minimal cost edge 

to depart from the node. Finally, the last column named Mean 

Travel Cost is the arithmetic mean for the Min Incident and 

Min Outgoing as defined in Equation 1.    

 
Figure 2 The flow of computing Minimum Travel Array (Ϣ) 

 

Table 4 Results for the graphs 

 

Type ID Name Size Best 

Solution 

Sum of Min 

Incident 

Sum of Min 

Outgoing 

Mean Travel 

Cost 

Symmetric 

1 US42 42 699 454 732 593 

2 hk48 48 11461 8757 11738 10247.5 

3 brazil58 58 25395 14627 21455 18041 

4 gr120 120 6942 1218 2855 2036.5 

5 si175 175 21407 19720 21804 20762 

6 brg180 180 1950 0 3600 1800 

7 si535 535 48450 44066 48197 46131.5 

8 pa561 561 2763 2101 2879 2490 

9 college647 647 47149705 25615458 42777203 34196331 

10 si1032 1032 92650 90158 92796 91477 

Asymmetric 

1 br17 17 39 0 24 12 

2 ftv35 36 1473 1068 1213 1140.5 

3 p43 43 5620 159 214 186.5 

4 ry48 48 14422 12987 11964 12475.5 

5 ft53 53 6905 3580 3989 3784.5 

6 ftv70 71 1950 1415 1509 1462 

7 kro124 100 36230 31425 30716 31070.5 

8 ftv170 171 2755 2141 2361 2251 

9 rbg323 323 1326 517 219 368 

10 rbg443 443 2720 37 352 194.5 
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Mean Travel Cost =  
Min Incident+ Min Outgoing 

2
                  (1) 

Where Mean Travel Cost is the computed value for each 

graph, Min Incident is the sum of Min Incident for each graph 

computed from the minimum travel array (Ϣ) and Min 

Outgoing is the sum of Min Outgoing for each graph 

computed from the minimum travel array (Ϣ). 

The results included in Table 4 are statistically presented 

in Figure 3 for symmetric graphs and in Figure 4 for 

asymmetric graphs. The horizontal axis represents the graph 

ID. The vertical axis is the normalized percentage of the sum 

of Min Incident, the sum of Min Outgoing, and the Mean 

columns are the relative percentage to the Best-Known 

solution. As example, for the first symmetric graph: 

percentage of Min Incident = (454/699 = 64%), percentage of 

Min Outgoing = (732/699 = 104%), and finally percentage of 

Mean = (593/699 = 84%). The light vertical bar at the left is 

for the sum of incident cost, the dark vertical bar at the right 

represents the sum Min Outgoing Cost, and the red dot 

represents the mean value define in Equation 1. The 

horizontal red line represents the Best-known solution for the 

graph as 100%, it is the metric reference to measure the 

deviation of both costs from the Best-Known solution. 

 

The results of symmetric graphs displayed in Figure 3 

showed that the sum of outgoing cost is greater than the sum 

of incident cost for all symmetric graphs. The graph with ID 

equals 6 had outlier behavior with zero incident cost and very 

high outgoing cost. The sum of the incident cost for all the 

tested graphs is lower than the best-known solution. The sum 

of the outgoing cost for 50% the tested graphs is higher than 

the best-known solution, for the graph with ID equals 10 has 

equal value, and for the remaining 40% has lower value. The 

mean travel cost for 40% the tested graphs is between 95% 

and 98% from the best-known solution, while the best-known 

solution is higher than the mean travel cost for all the tested 

graphs.  

The results of the asymmetric graphs displayed in Figure 

4 showed different behavior compared to symmetric one. 

Sometimes the sum of incident cost is greater than the sum of 

outgoing cost, and other times vice versa. The best-known 

solution is greater than all the other three quantities, the 

closest value to it is the higher from the incident and the 

outgoing sum. 

 
Figure 3 Symmetric graphs results 

 

 
Figure 4 Asymmetric graphs results 
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5. Discussion 

There are several algorithms to compute a lower bound 

value for the TSP, such as the Held-Karp lower bound which 

modifies the original graph by assigning weight to vertices 

and change cost between them (Held & Karp, 1970) and the 

deleted vertex algorithm which is based on removing a vertex 

and compute the minimum spanning tree (Rose & Tarjan, 

1978). In Table 5, a comparison between these two algorithms 

with the minimum travel array algorithm. It is clear that the 

Held-Karp lower bound is most accurate with highest 

complexity and expensive computation compared to the other 

two, while the minimum travel array keeps the original graph 

without modifications compared to the deleted vertex 

algorithm. 

Table 5 comparison with similar algorithms 
 

Algorithm 

Held-Karp 

lower bound 

deleted 

vertex 

algorithm 

Minimum 

Travel Array 

Complexity 
O(2n3) O(n2) 

 

O(n2) 

O(2n2) 

Computation expensive efficient efficient 

Accuracy high medium medium 

Technique modify 

graph 

modify 

graph 

No 

modifications 

6. Conclusion 

The results showed clearly the distinct difference between 

symmetric and asymmetric graphs. The sum of incident cost 

is always lower than sum of outgoing cost in the symmetric 

graphs, and this is not the same case in asymmetric graphs, 

where it may be greater or lower.  

The best-known solution is greater than the sum of 

incident and/or outgoing cost for all asymmetric graphs, and 

it may be lower (or greater) than the outgoing cost for the 

symmetric graphs. 

The Mean value is a reliable lower bound for symmetric 

graphs, and the greater from the sum of the incident and 

outgoing cost is a practical lower bound for asymmetric 

graphs. 

The exact solution for the Traveling Salesman Problem 

(TSP) is still a main scientific and engineering challenge. It is 

vital to understand the problem well in order to achieve its 

solution.  

The Ϣ is an intrinsic characteristic for the TSP and furnish 

a good start to understand its type. Although in this study 20 

problems were tackled, still more investigations and research 

are required. 

Data and Program 

The data in this article is free to access on GitHub 

https://github.com/meleiche/TSP_Data. The data was 

collected from TSPLIB and consists of ten symmetric graphs 

and another ten asymmetric graphs with varying node size. 

The data is available without license, which allows its open 

use freely without any constraint. The data is well-

documented and includes a README file that provides 

instructions on how to download and use the data. Each graph 

has its own folder, and it includes the original data from 

TSPLIB, the input format for the TSP_02 program and its 

output solution, and finally the Ϣ which is the main target. 

The TSP_02 is a C++ program developed to compute Ϣ 

for any graph. The input file is the cost file in the format 

included with the program. The output file is a detailed file in 

its end exist the required array. The URL of the program is 

https://github.com/meleiche/TSP_Min_Travel_Array, and it 

is freely available resource on GitHub. 
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Appendix (A) 

Min Travel Array for the problem US_42 

Incident 
cost 

Incident 
node 

Node 
Outgoing 

node 
Outgoing 

cost 
3 41 1 42 5 
8 1 2 41 11 
9 4 3 8 15 
9 3 4 5 15 

15 4 5 6 17 
6 7 6 5 17 
6 6 7 8 10 
5 9 8 7 10 
5 8 9 7 15 

14 25 10 9 20 
11 12 11 10 23 
11 11 12 10 26 
29 17 13 16 34 
10 15 14 16 31 
10 14 15 16 27 
21 17 16 18 26 
21 16 17 23 27 
26 16 18 19 26 
22 20 19 18 26 
22 19 20 21 30 
21 22 21 23 27 
5 23 22 21 21 
5 22 23 17 27 
8 25 24 27 9 
8 24 25 26 11 
3 27 26 25 11 
3 26 27 24 9 

12 29 28 27 20 
12 28 29 30 20 
8 31 30 32 15 
8 30 31 32 12 

11 33 32 31 12 
11 32 33 34 21 
9 35 34 31 14 
9 34 35 37 13 

17 37 36 35 18 
12 38 37 35 13 
9 39 38 37 12 
6 40 39 38 9 
6 39 40 38 15 
3 1 41 42 6 
5 1 42 41 6 

∑ Incident cost = 45442
1    ∑ Outgoing cost = 73242

1 

 

 


