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Abstract: Architects have always aimed at developing more adequate software to capture the complexity of biological 

self-organizational systems in architectural form generation. Agent-based modeling (ABM) emerged as a promising 

approach, where agents can exhibit emergent self-organizing behavior. However, the nonlinearity and feedback loops 

typically associated with natural systems are not quite achieved using traditional ABMs. This paper investigates the 

integration of reinforcement learning (RL) - an artificial intelligence technique - to develop reinforcement learning 

ABMs to enhance architectural form generation. Decentralized multi-agent reinforcement learning is proposed as an 

approach where agents learn complex strategies that maximize rewards through interactions with the environment to 

model emergent structures that are typical characteristics of natural systems. The paper reviews relevant biological 

self-organization concepts that inform architectural objectives, surveys previous ABM research, and proposes a RL 

framework that provides a systematic approach for developing RL models that capture the complexity and 

adaptability of natural systems, focusing on architectural form generation.
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1. INTRODUCTION 

During the early 1950’s, multiple trials emerged to digitalize 

architecture through successive evolutions, starting with 

Modularity, Computational Design, Parametricism, and 

finally Artificial Intelligence[1]. AI was defined by J. 

McCarthy as “using the human brain as a model for machine 

logic”[2]. Architects have always aimed to develop more 

adequate software to integrate nature complexity into form 

generation. Eventually, by blending statistical computing 

with computational design, machines were enabled to grasp 

complexity and build an “intuition” to solve problems or 

make architectural decisions [3]. 

The introduction of statistical computing has raised research 

interest for multiple governments, and institutions, aiming 

at the intersection of seemingly disparate research areas 

within subfields. This paper seeks a collaborative approach 

between architectural research in AI, which encompasses 

targeted subdisciplines such as machine learning and multi-

agent complex systems, aiming to learn from nature 

complex systems in terms of adaptive forms. Generative 

emergence was first defined by John H. at Oxford 

University in 1998, "We are everywhere confronted with 

emergent complex adaptive systems, ant colonies, neurons 

...where the behavior of the whole is much more complex 

than the behavior of the parts"[3]. 
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2.AIMS AND METHODOLOGY 

The main aim of this paper is to investigate the potential of 

machine learning interventions in architectural form 

generation, with specific focus on Reinforcement Learning 

(RL) intervention in agent-based models (ABM). The paper 

first discusses background related to biological self-

organization systems at the organism level to understand 

potentials and parameters in biological self-organization 

systems, followed by a review of previous research related to 

agent-based modeling self-organizational form generation to 

understand the potentials and limitations in previous models. 

Finally, the paper discusses the potential of artificial 

intelligence RL intervention in ABM form generation, and 

proposes a framework for RL in architectural form generation 

and its limitations, taking into account the different 

parameters and constraints of biological self-organization 

systems.  

 

3.BIOLOGICAL SELF-ORGANIZATION SYSTEMS 

Yates et al. [4] and Holland [5] are major contributors to self-

organizing systems, focusing on emerging concepts like 

mathematical models, game theory, computer-based models, 

and neural networks. Self-organization in biological systems 

differs from physical and chemical systems due to the rules 

governing interactions among components. Understanding 

the complexity of social biological systems adds to the 

architectural understanding of where decision-making, 

synchronization of activities, and the surrounding 

environment impact the emergent patterns. As shown in 

Figure 1, self-organization systems at the organism biological 

level can be categorized based on behavior and collective by-

products, allowing for a more accurate assessment of 

architectural objectives. As shown in Figure 2, examples 

include collective construction, swarming, pattern formation, 

neural systems, and evolutionary systems[6][7]. This paper 

focuses on social complex systems in collective construction 

and swarming due to their high response to environmental 

signals, which can increase the flexibility and variety of 

collective patterns they build [6]. 

 
Fig 1 Levels of biological organizations. 

 

 
Fig 2 Organism Biological Self-Organization Categories. 

The organism level is closely related to architectural ABMs, 

as organisms can create complex structures and behaviors 

through simple interactions. Emergent biological multi-

agent complex systems, like wasps or termites, are 

structured bottom-up, incorporating environmental, 

structural, and functional aspects.  

Positive and negative feedback are essential in self-

organizing systems to regulate fluctuation, stabilize 

processes to prevent chaos[4]. Positive feedback amplifies 

behavior, leading to exponential growth and emergent 

patterns, Such as Positive feedback in a flock of birds 

changing directions, and negative feedback maintains safe 

spacing to prevent collisions, as shown in Fig 3. 

 
Fig 3 Self-organizing systems, both positive and negative feedback 

Complex emergent models exceed the typical notion of 

architectural form generation. Systems have the capability 

of self-organization defining new levels of complex 

behavior in a nonlinear manner of individuals (agents), 

displaying higher-level integration, functionality, and 

adaptation based on the evolutionary process of continuous 

adjustments in micro-events and feedback loops over time 

from the system to its environment, capitalizing ‘efficiency’ 

and ‘optimization’[4][5][6]. 

4.ABM SELF-ORGANIZATIONAL FORM 

GENERATION 

Agent-based modeling (ABM) is a powerful computational 

tool that can simulate the behavior of agents. ABM has been 

applied in various fields, including architecture, to model 

self-organizing systems and emergent behaviors. Biologists, 

biomimetic engineers, and computer scientists have already 

tackled the field of computing the self-organized ABM, and 

used it as a problem-solving or optimization method in real-

life problems [8]. ABMs have been used in various 
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architectural applications such as simulation and form 

generation, where agents can represent design elements such 

as building components or environmental factors. By 

defining rules and constraints for the agents, the ABM can 

generate emergent patterns and structures that exhibit 

complex self-organization [9]. 

Throughout the last decades, many architectural digital tools 

were developed aiming to digitalize natural patterns such as 

rule-based logic, ABMs, Or coupling ABMs with heuristic 

algorithms for optimization [10][9]. Research related to 

ABM tools, including Steven [11], Franziska [8] and Manzo 

[12], reveals that ABM software development remains a 

significant barrier to generating complex behavior that occurs 

in nature. Architectural digital tools have been developed to 

digitalize natural patterns, but traditional rule-based logic is 

mostly incapable of simulating complex behavior [8][11]. 

Typical rule-based logic generally fails to simulate complex 

behavior, lacking crucial properties such as non-linear 

dynamics, true environment understanding and feedback 

loops, and efficient resource allocation, accordingly altering 

a set of rules per time. As for ABM tools, the level of 

abstraction in the inputs and feedback does not achieve the 

complexity needed for achieving developed architectural 

forms, which is a post-design decision and does not inform 

the process from the beginning. This often results in 

homogenized forms that do not satisfy basic architectural 

constraints such as structural, environmental and functional 

aspects. Accordingly, the increasing complexity over 

multiple design layers of ABM tasks makes the process 

difficult to be interpreted with pre-programmed rules, which 

brings computational architecture toolset towards AI [13]. 

 

5.AI REINFORCEMENT  LEARNING 

INTERVENTION IN ABM FORM GENERATION 

AND PROPOSED FRAMEWORK 

Artificial intelligence, coined by John McCarthy in 1956. 

Machine learning (ML) is AI that enables computers to learn 

without explicit programming, using neural networks 

inspired by the human brain. Deep Neural Networks (DNNs) 

are artificial neural networks with interconnected layers 

designed to process complex data [14], as shown in Fig 4. 

Researchers have classified AI into four main learning types: 

supervised, unsupervised, semi-supervised, and 

reinforcement learning [1][15], as shown in Fig 5 

 
Fig 4 Relationship between AI, ML, NN & DNN [16] 

 
Fig 5 Machine learning types: Unsupervised Learning (UL), 

Supervised Learning (SL), 

 

Semi-Supervised Learning (SSL), Reinforcement Learning 

(RL) [17] (edited by researcher). 

There is a rapid research advancement exploring the 

potential of integration of machine learning and architecture 

using supervised and unsupervised algorithms, such as 

architectural classification [14], plan generation [18], 

stylized architecture [1], and urban design and planning 

[19].  

Unsupervised or semi supervised learning are mostly used in 

labelling data such as labelling plan spaces in plan generation 

applications [18], One of the most used methodologies in 

architectural form generation are unsupervised generative 

adversarial neural networks (GAN). Zhang [20], used Style 

GAN to use stylized plans and sections to learn and build 

stylized 3D models, Fig 6. However, the generated forms 

didn’t address the main architectural building components 

nor special qualities, Although the continuous attempts of 

researchers to take 2D views classification and generation a 

step further to 3D, where 3D translation occurs in late stages 

of the generative process. 

 

Fig 6 Style GAN to generate stylized plans and sections to build 

stylized 3D models [20]. 

Imdat et al. [21] merged both supervised labelled plans as 

input data data which then converged to unsupervised  GAN 

model to generate entirely new designs, as shown in Fig 7. It 

is clear that there is a lack of information to provide a model 

for form generation dealing with natural complexities using 

AI, and training DNNs to evaluate 3D spaces [21]. It is also 

obvious that there is a lack of architectural research 

addressing reinforcement learning (RL) and its potential in 

dealing with form generation multi-agents.  
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Fig 7 home design samples generated in 

axonometric and graph view [21]. 

RL  has significantly contributed to the field of AI since 2015 

[22].  RL trains machine learning models to make a sequence 

of decisions, which enables RL methods to drive optimal 

strategies for agents [13]. Deep reinforcement learning 

(DRL) uses multi-layer neural networks to solve a problem 

in different levels of high-dimensional data, where agents 

compete or cooperate to provide optimal solutions and 

maximize the task completion success based on self-learning 

strategies [12][13]. This qualifies RL as a promising 

approach to solve complex real-world problems in multiple 

fields such as multi-player games, surveillance, drones, and 

architecture [12]. 

RL can help overcome the limitations of traditional ABMs in 

architectural form generation by enabling agents to learn and 

adapt to the environment in real-time and optimize objectives 

through rewards and Markov Decision Process [23].  

Reinforcement learning (RL) has the potential to enhance the 

capabilities of ABMs and enable the generation of more 

complex and optimized architectural forms due to its 

heuristic mode, incorporating meta-heuristic characteristics 

without human knowledge, and its sequential decision-

making approach, making it suitable for evolving generative 

processes. Although a few researchers have explored the 

integration of RL training into architecture, such as field 

sensing robot swarms, and layout shape grammars [24], there 

is very little in precedent literature  within architectural 

research that has addressed the potential of RL in dealing 

with multi-agent ABM and form generation. 

Wang and Snooks [25], Fig 8, proposed an RL single agent 

Random Walk Formation approach, applied to a case study 

exemplified the concrete effects and potential flexibility of 

cultivating intuitions for generative systems. Their research 

highlighted the importance of the future research trajectories 

to further develop the multi-agent self-organizational 

generative approach.  

 

 
Fig 8 RL single agent Random Walk Formation approach, training 

outcome samples [25].Error! Reference source not found.. 

the state represents the current environment snapshot 

observed by the RL agent. The agent starts by taking an 

action, then receives a scalar reward that evaluates the quality 

of the action and guides the agent towards better outcomes. 

The policy, which is a function that maps observation states 

to actions, is learned by the agent, either deterministically or 

stochastically. The goal of the agent is to learn a policy that 

maximizes the expected reward over time, enabling it to 

make optimal decisions in complex environments [14] 

 
Fig 9  RL consists of three main components: state “S”, reward “R”, 

and action “A”. Top: Single-agent RL, Bottom: Multi-agent RL [26] 

RL can be implemented using either a single agent or 

multiple agents. Single-agent RL involves a single agent 

interacting with an environment to learn a policy that 

maximizes its expected reward. On the other hand, multi-

agent RL involves multiple agents interacting with each other 

and the environment to learn a joint strategy that maximizes 

the collective reward. Similarly, RL can be implemented in a 

centralized or decentralized manner. Centralized RL involves 

a single agent or a centralized controller that makes decisions 

for all agents, while decentralized RL allows each agent to 

make its own decisions based on local observations and 

rewards. 

The choice of single vs. multi-agent and centralized vs. 

decentralized reinforcement learning depends on the 

problem. Self-organizing complex problems, such as the 

flocking or the formation of ant colonies, typically involve 

multiple agents interacting with each other and the 

environment to produce emergent structures. In these cases, 

multi-agent decentralized RL is more appropriate. However, 
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for problems that can be solved by a single agent or require 

centralized control, single-agent and centralized RL may be 

more suitable. Overall, the selection of the RL approach 

should be based on the problem's characteristics and 

requirements [14], as shown in Fig 10. 

 

 
Fig 10 Reinforcement learning model 

selection according to the problem. 

 

The proposed framework for developing a reinforcement 

learning model for self-organizational form generation 

inspired by natural systems such as swarm behavior or 

insect nest construction, involves several key steps. Firstly, 

a comprehensive understanding of the specific natural 

system is gained, including its characteristics, behavior, and 

patterns, to extract relevant parameters that will inform the 

model. Accordingly select an appropriate learning type for 

the reinforcement learning model. The framework suggests 

using decentralized multi-agent deep reinforcement 

learning (DMA-DRL) to model decentralized control and 

emergent structures observed in collective construction 

systems and swarming in social natural systems. 

The appropriate algorithm is chosen based on the specific 

problem. Factors such as problem complexity and desired 

outcomes guide the choice of RL algorithm. With the 

algorithm selected, the RL model is formulated, defining the 

properties and parameters of the agents. In form generation, 

each agent represents a building component with properties 

like position in 3D environment, size that will influence 

building unit, shape which can be predefined or learned, 

communication type with nearby agents, and memory. 

These properties determine the architectural characteristics. 

Agents can interact and collaborate within their influence 

radius, exchanging information or coordinating actions. 

Agent input parameters such as learning rate, exploration 

vs. exploitation balance, influence radius, thresholds, and 

action space, control how agents update their knowledge, 

explore new possibilities, interact, and trigger specific 

actions. 

The next step is training the model using the selected 

algorithm and input variables according to the natural 

system. The model is exposed to the environment, and 

agents learn from their interactions to maximize rewards 

based on specified objectives. Iterative updates and 

adjustments improve the model's performance. 

Visualization and evaluation help assess how well the RL 

model captures the complexity and adaptability of the 

natural system. However, there are some limitations related 

to machine power and the tendency of the model to generate 

black box unpredictable outputs, which can be further 

discussed in future research [27].  

Fig 11 illustrates the application of this framework in 

developing reinforcement learning models for complex 

natural systems. The specific implementation details and 

examples depend on the studied natural system and the 

objectives of architectural form generation.  

 
Fig 11 Proposed Reinforcement learning framework to solve 

complex multi-agent problems. 

6.CONCLUSION 

This paper investigated the potential of integrating 

reinforcement learning techniques into agent-based 

modeling frameworks for architectural form generation. 

The limitations of traditional rule-based ABM approaches 

were reviewed, including the inability to achieve the 

nonlinearity, adaptation, and feedback loops exhibited in 

biological self-organizing systems. RL framework was 

proposed as a machine learning approach that could 

enhance the capabilities of ABMs by enabling agents to 

learn optimal strategies through interaction with 

environment. 

The key concepts of biological self-organization at the 

organism level were outlined, focusing on decentralized 

control, and simple local interactions leading to complex 
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global behaviors. These biological principles informed the 

architectural objectives for achieving adaptive, optimized 

forms. A review of previous computational form generation 

methods established the need for more advanced AI 

techniques like RL. 

A conceptual framework was presented for integrating 

decentralized multi-agent RL into ABM architectural 

models. This involves understanding the target natural 

system, selecting appropriate RL algorithms, formulating 

the RL-ABM model, training, and evaluating the generated 

forms. The trained RL agents would learn to self-organize 

and adapt to produce architectural configurations. 

In conclusion this research explores a novel form generation 

approach using AI advances and bio-inspired multi-agent 

models. It aims to develop architectural model that captures 

natural complexity. Further work is needed to validate the 

framework on specific case studies and shift the model from 

black-box to grey-box. 
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