

ENGINEERING RESEARCH JOURNAL (ERJ)

Volume (52),Issue (2)

April 2023, pp:51-36

https://erjsh.journals.ekb.eg

15

Comparison of different strategies for Time and Energy

Efficient Offloading for Mobile Edge Computing

Rania Azouz

 1,*
, Esraa Mosleh Eid

1
, Lamiaa Elrefaei

1
, Heba A. TagElDien

1

1 Department of Electrical Engineering, Faculty of Engineering, Shoubra, Benha University, Cairo ,Egypt.

* Corresponding author

E-mail address: rania.salim16@feng.bu.edu.eg, esraa.soliman@feng.bu.edu.eg, lamia.alrefaai@feng.bu.edu.eg,

hebaallah.shahat@feng.bu.edu.eg

Abstract: Every day, the number of wireless devices, and IoT applications increases, which require extensive computational

resources. Therefore, it is possible to mitigate the lack of computational resources in wireless devices by using Mobile Edge

Computing (MEC). MEC is a modern technology that brings the capabilities of Cloud Computing at the edge of a mobile network to

perform computationally intensive tasks, which reduces the delay and prevents end to end communication with the remote Cloud.

This paper proposed a task offloading model for multiple-device, multiple-task MEC system, the model is formulated as an

optimization problem with the objective of reducing time of computation and energy consumption. However, the complexity rapidly

increases as more devices are added to the system, thus the proposed problem is solved by introducing five strategies which are full

local computing, full offloading computing, random offloading, Q learning, Deep Q network, and a distributed DNN, which are

compared with the optimal offloading strategy. The results (4 devices with 3 tasks for each device) show that the total cost in terms

of time and energy consumption in Q learning, DQN and, Distributed DNN algorithms is near to the optimal offloading strategy,

furthermore, these strategies reduce the total cost up to 63.7% when compared to full local strategy, also up to 21.8% when compared

to full edge strategy. However, the learning speed of distributed DNN is faster than Deep Q Network, when number of devices

increases. In addition, adistributed DNN generates the offloading decision (in 4 milliseconds) faster than DQN algorithm (in 8

milliseconds).

Keywords: Deep learning, Task offloading, Resource allocation, MEC, OFDMA.

1. Introduction

In the past, mobile phones was limited to making calls

and sending text messages. With the rapid development of

mobile networks and technology, the smart phones develop

for use in a variety of applications, such as Face

Recognition, Augmented Reality, and Virtual Reality

[1][2]. Although, the smart phones and wireless devices

have computational resources to run these applications, they

are unfit to work efficiently due to most of these

applications require computationally intensive resources

[3][4]. To mitigate the resource limitations of wireless

devices, computationally intensive tasks can be offloaded to

other resourceful devices. Hence, the concept of

computation offloading was born [5].

Mobile Cloud Computing is considered popular method

which used in offloading, where the applications or tasks

are offloaded to the cloud with intensive resources through

the wireless channel to reduce load and extend battery life

of wireless devices [6]-[8]. However, because of the long

distance between wireless devices and cloud servers,

offloading to the cloud requires significant latency and

places an additional burden on mobile network. So, it is not

suitable to execute real time applications.

Mobile Edge Computing (MEC) is considered an

effective solution to address the problems associated with

Mobile Cloud Computing. In MEC, Cloud services and

resources are being placed near wireless devices at the

network's edge, at locations such as Wi-Fi, access points, or

the Base Station (BS) [9]. So, MEC can provide low latency

and high bandwidth, which enables to execute real time

applications [10][11]. Many studies use the principle of task

offloading on the MEC to reduce the energy consumption,

efficiently allocate the resources, minimize the time of

computation, maximize the system utility, and reduce the

total cost of wireless device. However, getting the optimal

offloading decision in multiple-device and Multiple-task

MEC system is a great challenge. Here, Deep learning and

Machine learning can be used as efficient techniques for

offloading decision [12].

Deep learning algorithms based on Neural Network are

a relatively recent field research that has seen great

improvement in the last decade and will continue to develop

as the Deep learning became more able to deal with more

complex problem. Hence, Deep Q network and a distributed

Deep Neural Network-based task offloading algorithms is

developed to generate the optimal offloading decision [13].

The summery of the main contributions in this paper are as

following:

 Task offloading and resource allocation model is

formulated as an optimization problem with the

objective of reducing the total cost in terms of time of

computation and energy consumption for multiple-

device, multiple-task MEC system.

 The optimization problem is modified to an equivalent

form of deep learning techniques such as Deep Q

network (DQN) and distributed Deep Neural Network

(DNN)-based task offloading to solve the problem

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

52

 The simulation results show that the total cost in terms

of time and energy consumption in DQN and,

Distributed DNN algorithm is near to the optimal

offloading strategy and reduce the total cost up to

63.7% when compared to full local strategy, also up to

21.8% when compared to full edge strategy. In

addition, a distributed DNN are used to determine the

best policy of accelerate learning.

The rest of this paper is organized as follows. Section 2

is the related work of computation offloading to MEC

server. Section 3 includes the mathematical operation which

used to solve the problem. Section 4 includes the

implemented strategies. Section 5 shows the simulation and

the results of our model. Section 6 shows the conclusion of

this paper and the future work.

2. RELATED WORK

In recent year, computation offloading in MEC systems

has become an important research topic in many scientific

papers due to increasing number of wireless devices and

IoT applications which required an extensive computation

and resources. So, in this section, we will mention the

previous studies about task offloading for edge computing.

In section 2.1, we will mention the studies, which use the

traditional optimization methods to solve the problem.

Recently, there are many studies, which solved the problem

by using machine learning and deep learning, as in section

2.2. The computation offloading may be binary or partial

offloading to the edge server. where binary offloading is

meaning that the whole data size is offloaded to the edge

server or locally execute at a wireless device, while the data

size is divided where a subset of the data is executed locally

or remotely, this is meaning a partial offloading [14]. In this

study, we executed a binary computation offloading. Some

of computation offloading studies are categorized by

number of MEC servers, users, and tasks. In [19][24][25]

computation offloading model is single user. Others study

multi users, multi tasks, and multi MEC servers [21].

2.1 Traditional optimization methods

The main objectives of task offloading minimize

required time to execute the task, and energy consumption

of wireless devices. Many of studies used the traditional

optimization method to achieve these objectives [15][16].

Zhang et al. [17] used game theory to solve the optimization

problem of task offloading and resource allocation to

minimize the latency and energy consumption. The main

goal of Mao et al. [18] is minimizing the latency and task

failure. The author used the Lyapunov optimization to

achieve this goal. However, they did not consider the

energy consumption due to the energy harvesting is used as

renewable energy. Salmani et al. [19] applied the

optimization method to minimize the energy consumption

where the offloading may be partial or binary offloading for

independent tasks. Elgendy et al. [20][21] joint security,

computation offloading, and resource allocation, in addition

the author used optimization method to solve the problem,

where the author in [18] assumed that the model has single

task. In addition, the objectives are to minimize the latency

and energy consumption. The extension of [20] is [21]

where the model has multi tasks, where the transmitted data

was be compressed to minimize the latency. Wan et al. [22]

used NOMA to offload the task to MEC server, the

objective is minimizing the total delay of the computation

of all tasks, they used a heuristic algorithm to solve the

optimization problem. The summary of traditional

optimization methods is mentioned in TABLE 1, as it

shows the open research areas and the drawbacks in each

paper.

TABLE 1: Summary of traditional optimization methods

Security Servers Tasks Devices Objective Algorithm Proposed method Reference

No Single Multiple Multiple Minimize the

latency and

energy

consumption

Game theory A distributed joint computation

offloading and resource allocation

optimization method

Zhang 2015

[17]

No Single No Single Minimize the

latency

Lyapunov

optimization

investigate a green MEC system

with energy harvesting devices

and develop an effective

computation offloading strategy

Mao 2016

[18]

No Single Single Multiple Minimize the

energy

consumption

Optimization

method

address the uplink communication

resource allocation for offloading

systems that exploit the full

capabilities of the multiple access

channel.

Salmani 2020

[19]

Yes

Single Single Multiple Minimize energy

and latency

Optimization

method

A resource allocation and

computation offloading model

with data security

Elgendy 2019

[20]

Yes Single Multiple Multiple Minimize the cost Optimization

method

A Multi-User Multi-Task

Computation Offloading model

Elgendy2020

[21]

No Multiple

Multiple Multiple Minimize the

delay

a heuristic

algorithm

NOMA-based multi-access MEC

system with multiple MEC servers

and multiple users

Wan 2021

[22]

https://www.sciencedirect.com/topics/computer-science/multiple-access-channel
https://www.sciencedirect.com/topics/computer-science/multiple-access-channel

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

53

2.2 Deep learning algorithms

Simultaneously, Machine learning and Deep learning

have been widely applied in a variety of MEC offloading

fields. Due to the benefits of no previous information and

low complexity [12][23]. Ali et al. [25] minimize the total

cost by using an energy efficient and faster deep learning

based offloading technique (EFDOT). The author model

has a single user with a single task where the task is divided

it into optimal numbers of components and each component

either execute inside the local device or offloading to edge

server. In [26], the author used edge computing and cloud

computing to minimize the total cost in terms of latency and

energy consumption of autonomous vehicles. The author

used parallel deep neural networks to calculate the optimal

offloading decision.

Recently, deep reinforcement learning is used to make

computing offloading [27][28]. Li et al. [27] used Deep

Deterministic Policy Gradient (DDPG) algorithm to

minimize the delay, there are multiple tasks, where each

task selects the subnet edge according to type of tasks.

Huang et al [28] used the deep reinforcement learning to

maximize the computation rate. Elgendy et al. [29] used Q

learning and deep Q learning to solve the optimization

problem and calculate the optimal offloading decision

which reduce the latency and energy consumption. When

the task is transferred to the edge server to compute it

through the wireless channel, the attackers may attack the

task, so some of papers takes in calculations the security

[30][31]. In [30], before the task transmit to the edge, the

task is encrypted to reduce the attacks. a standard

symmetric cryptography algorithm (AES) is used to encrypt

task. In [32], the author was used deep supervise learning to

find the offloading decision and bandwidth allocation. This

algorithm trains faster, but it needs the labels data.

Moreover, he used single task for each device and single

server. In [33], the author discussed the issue of service

migration when hosting multiple users and multiple edge

servers to decide to move a continuous service from the

edge server to other edge server, so he proposed a Deep

Recurrent Q Network-based service migration decision

algorithm (DRQNSM) to reduce time and energy

consumption while making sure reliable, stable, and

continuous services during user movement. To compare

DRQNSM with the classic reinforcement learning. In [34],

the author focused on offloading of tasks with varying

priorities for multi-device, multi-task MEC system. Hence,

the author proposed a double reinforcement learning

computing offloading (DRLCO) algorithm which makes the

decision on offloading, transmission power, and CPU

frequency to reduce energy and time. The summary of the

deep learning algorithms is mentioned in TABLE 2, as it

shows the open research areas and the drawbacks in each

paper.

TABLE 2: Summary of deep learning algorithms

Security Servers Tasks Devices Objective Algorithm Proposed method Reference

No Single Single Single Minimize

the cost

Deep Learning Faster deep learning based offloading

technique to minimize the overall cost

Ali 2021

[25]

Yes Multiple Single Multiple Minimize

the total cost

Distributed Deep

Learning algorithm

Distributed Deep Learning algorithm

used to find the optimal offloading

decision

Khayyat

2020 [26]

Yes Multiple Multiple Multiple Minimize

delay

Deep Deterministic

Policy Gradient

(DDPG)

Deep reinforcement learning was used to

solve the difficult computation offloading

issue

Li 2020 [27]

No Single Single Multiple Maximize

computation

rate

Deep reinforcement

learning-based

online offloading

(DROO)

Deep reinforcement learning was used

for the online offloading decision

Huang 2019

[28]

No Single Multiple Multiple

Minimize

the cost

Q Learning, Deep Q

Network

Joint computation offloading and task

caching

Elgendy

2021 [29]

Yes Single Multiple Multiple Minimize

time and

energy

Deep Q Network Security-aware data offloading and

resource allocation model

Elgendy202

1 [30]

No Multiple Single Multiple Minimize

the cost

Deep Q Network,

Double Deep Q

Network

A novel service migration

scheme to support mobility

Chen 2021

[31]

No single single Multiple Minimize

the system

utility of

MEC

network

Deep learning Deep supervised learning-based

computational offloading algorithm

(DSLO)was used for computational tasks

in MEC networks

Yang 2022

[32]

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

54

From the above studies, we used six strategies to

decrease the total cost in terms of energy consumption and

latency then compare between them through the learning

and the testing speed, where the model has multiple users

and multiple tasks.

3. SYSTEM MODEL

We begin by assuming that there are wireless devices,

as indicated by

 (1)

where each device has independent tasks, which can

be executed locally or by offloading to a MEC server, as

indicated by

 (2)

In addition, as shown in Fig.1, there are a Base Station

with a MEC server, and a wireless devices connected to a

Base Station via a wireless channel. Furthermore, the band

width will be equally shared between the wireless devices

which decide to offload the tasks.

 The decision of offloading for task n of user m is

denoted by , as shown in eq. (3), where

 means that the device n decides to execute its task

m locally, and means that the user n decides to

offload its task m to a MEC server.

 {

The next subsection will explain the computation model

and the optimization problem by details.

Fig. 1: System model architecture [20]

3.1 Computation model

In the following section, we will discuss the formulas

used to determine the computation time, energy

consumption and cost used in varying strategies.

3.1.1 Local computing model

In the local computing, the user n selects to compute its

task m locally by using its computing resources and the

time required to compute this task locally can be calculated

by
 according to eq. (4):

Where
 is the CPU frequency (cycle/s) of wireless

device n, is the size of task m of user n (bit), and

 number of cycles required to execute one bit.

 The energy required to compute the task m of user

n according to eq. (5):

 (5)

Where is the consumed energy of user n per CPU

cycle,
 [44].

The following formula can be used to determine the

total cost of local computing:

 (6)

which is derived from eq. (4) and eq. (5), where
 and

 [] are the weights of time and energy

consumption, respectively. Where the sum of two weights

equals 1. If
 and

 = 0, this means that the energy

consumption is more sensitive than the time. If

and
 = 1, this means the time is more sensitive than the

energy, especially when the existing application is real-

time application such as online gaming. So, the values of

weights are set according to the application required to

execute.

3.1.2 Edge computation model

In Edge computation, first, the user n selects to offload

its task m to the Base Station via the wireless channel, then

execute it in MEC server. The uplink data rate is required

to offload the task to MEC server is calculated according to

eq. (7):

Where, B is the total bandwidth of a wireless channel,

shared between all wireless devices select to offload, is

the density of noise power, and is the transmission

power of device n. The radio resource allocation at the

same cell is based on orthogonal frequency division

No Multiple single Multiple Minimize

time and

energy

consumption

Deep learning Deep Recurrent Q Network-based service

migration decision algorithm

(DRQNSM) to reduce time and energy

consumption

Chen 2023

[33]

No single Multiple Multiple Minimize

time and

energy

Deep

Reinforcement

learning

double reinforcement learning computing

offloading (DRLCO) algorithm which

makes the decision on offloading,

transmission power, and CPU frequency

Liao 2023

[34]

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

55

multiple access (OFDMA) where orthogonal frequency

prevents or reduces interference between uplink channel

[21][26], is channel gain which follows Rician fading

distribution, which determined by eq. (8) according to [35],

Where ̅ is the average channel gain which determined

by eq. (9):

 ̅ (8)

 ̅ (

)

 (9)

Where = 3 gives the antenna gain, 3 x 10
8
 is the

speed of light, =915 MHZ gives carrier frequency, =

120 + 15(n - 1) , for n = 1, · · · , N, where is the

distance between wireless device n and Base Station, is

the path loss exponent.

The transmission time required to upload the task to the

Base Station is calculated according to eq. (10):

 (10)

After the task offload to Base Station, MEC server

begin to execute the task by using the computation

resources of MEC server. Where the time required to

execute the task in MEC server is determined according to

eq. (11):

 (11)

Where
 is the CPU frequency (cycle/sec) of MEC

server that is allocated to device , it is determined by

divided the CPU frequency of MEC server F on number of

offloading devices. Furthermore, the time required to

download the executed task from MEC server to wireless

device is neglected due to the data size of the executed task

is small. The total time from offloading to executing the

task is determined according to eq. (12):

 (12)

Where
 and

 are determined by eq. (10), (11)

respectively. Energy consumption is needed to offload the

task to MEC server is defined as
 :

 (13)

Where is the transmitted power (watt).

The total cost to offload the user's n task m is determine

according to eq. (14):

 (14)

Where
 and

 are the weights, which mentioned in

the local computing.

3.2 Optimization Problem

The objective of our model is to decrease the total cost

of time and energy consumption, where the total cost of all

tasks is determined according to eq. (15):

 ∑ ∑()

Where if the user n selects to offload its task m, the

offloading decision is set to . Otherwise, if the

user n selects to locally execute its task m, the offloading

decision is set to .

The offloading decision as optimization problem to

decrease the total cost is considered according to:

 [∑ ∑()

]

s.t [
]

 ∑ ∑

 C2

 ∑ ∑

 C3

 C4 (16)

Where C1 refers to the required energy to execute the

task remotely is less than the required energy to execute

the task locally. C2 shows that when the users decide to

offload their tasks must the sum of data rate of all wireless

devices not exceeding the total uplink data rate R. C3

forbids that the sum of computation resources of MEC

server to wireless devices to execute the tasks remotely

must not be greater than the total available computation

resources of MEC server F, where F is CPU frequency of

MEC server.C4 shows that the offloading decision is

binary where each wireless device only choose to execute

the tasks locally or remotely.

4. STRATEGIES

In this paper, there are six strategies applied to execute

the tasks. We will explain each strategy in detail as seen

below.

4.1 Full local computing strategy

Full local computing, Algorithm 1, is meaning that all

wireless devices select to execute all tasks locally, where

the offloading decision is set to , such that the

offloading decision vector is [].We begin to

initialize the input parameters used to calculate the time

,eq.(4), the energy consumption, eq.(5), and the cost of

each task, eq. (6), then sum the cost of all tasks to find the

total local cost.

4.2 Full edge computing strategy
The full edge computing strategy, Algorithm2, is

meaning that all users select to execute their task at a MEC

sever, where the offloading decision is , such that

the offloading decision vector is []. Then we

initialize the input parameters such that size of computed

data , a CPU cycles of MEC server F, the transmitted

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

56

power , the channel band width B.W, …. We begin to

determine the channel gain of each device according to eq.

(8) and (9) to determine uplink date rate of each device

according to eq. (7), where the band width of the wireless

channel is shared equally between the devices. Then we

determine the time and the energy consumption for each

task of the user according to eq. (12) and (13) respectively.

Note that the resources allocation of MEC server F are

divided equally between all tasks.in the end, calculate the

cost of each task then sum together to calculate the total

cost.

Algorithm 1: Full local computing strategy

 ,

1:

3:

 4:

5:

 6:

7:

8:

Algorithm 2: Full edge computing strategy

 ,

 1:

 3:

 4:

 5:

 7:

 8:

 9:

 10:

 11:

4.3 Random offloading strategy

Random offloading strategy, Algorithm 3, is meaning

that each device selects randomly to execute each task

locally or offloading to MEC server, where the offloading

decision can be composed from a variety of ways, such as

 [].Then calculate the total cost
 .

Finally, return the best total cost

 .

Algorithm 3: Random offloading strategy

 2:

 3:

 4:

 5:

 6:

Algorithm 4: Total Cost

 ,

 1:

 2:

 4:

 5:

 6:

 7:

 8:

 9:

10: else

11:

12:

14:

15:

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

57

16:

17:

18: end

19: end

20: end

18:

4.4 Optimal offloading strategy

Optimal offloading strategy, Algorithm 5, is the

method, which used to find the best offloading decision to

minimize the total cost. All possible offloading decisions

for the number of devices with their tasks (2NM) in the

system are first generated by the algorithm, then the total

cost
 of all possible offloading decisions is

determined. Finally, return the minimum total cost

 . However, this algorithm will only operate for up

to 7 devices with 3 tasks for each device, because it is a

complex method, which takes a long time to generate all

possible decisions and compute the optimal offloading,

especially when number of users and tasks increases.

Algorithm 5: Optimal offloading strategy

 2:

 3:

 4:

 5: end

 6: end

 7:

4.5 Reinforcement learning

In this section, we will show the main components of

reinforcement learning, followed by a detailed

demonstration of deep reinforcement learning method for

generating the offloading decision. where the

reinforcement learning is a category of the machine

learning.as shown in Fig. 2, the important components of

reinforcement learning are state, action, reward,

environment, policy, and agent. where the agent takes the

state from the environment. the action is selected

from action space A, where the probability to choose

action depend on the policy | . the

selected action is required to move from state to

next state . the objective of the reinforcement

learning is increasing the cumulative rewards which

calculated by: ∑

 , where is discount factor

[36][37]. The discount factor is number between (0,1).

The solving of the optimization problems is by The Q

learning algorithm and Deep DQN algorithm. The main

parameters are state, action, reward, and policy [30].

 State: the state Z(t) is the offloading decision Z=

{z_1,1,z_1,2,…,z_(N,M)}, where State space Z is 1 X

NM vector is defined as:

 { }

 Action :the action space A is 1 X NM vector, where the

selecting action is required to move from state to next

state, where a_tis the index selection from state length.

The index selection l = 1, 2, 3, …, NM and the action is

defined as:

Reward: the reward value depend on the

objective function, where the objective function of the

optimization problem is minimizing the time and

energy consumption to execute the tasks of all

wireless devices. In our problem, the objective

function is derived from the state (t) and eq. (15),

where denoted by eq. (19):


 ∑ ∑ ()

The reward value of state s(t) and action a(t) is

calculated by the eq. (20):

 {

 Policy: the policy used to select the action in this work

is ε greedy policy, ε . At the beginning of

learning we don't know the optimal action for that the

action is randomly chosen for ε probability to explore

the environment this is called exploration. When the

probability is , The action
to choose the optimal action this is called exploitation.

Fig. 2. Reinforcement Learning architecture

There are different models of reinforcement learning. In

this study Q learning model are used. DQN model of deep

reinforcement learning are used also to achieve the

objective function. Q learning and DQN will be explained

below.

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

58

4.5.1 Q learning

Q learning algorithm is a free model of reinforcement

learning. This algorithm can solve our problem by using Q

table [29][38] where the states are represented in rows of

the table and the actions A is represented in the columns.

first, initialize value in the table. At each step, the action

is chosen by using ε greedy policy. The action is performed

to move from state to next state and to calculate the reward

according to eq. (19), then the Q value is update according

to eq (20).

 [

]

 Where the is the old value of ,

 is maximum expected future reward value

of Q in the next state respectively, is the reward,

the left is the update of , value is the

learning rate, and is the discount factor. where

 and .

4.5.2 Deep Q Network

DQN is a branch of Deep Reinforcement Learning

algorithm, where DQN used the DNN is used to generate

and save values.as shown in Fig. 3, DQN [39][40] is

consist of two DNNs, where the first DNN is the

evaluation network and the second DNN is the target

network as shown in fig. The parameter values of

evaluation network and target network are ́

respectively. The evaluation network and the target

network generate the outputs and

respectively. The inputs of evaluation network and the

target network are the state and the next state

 respectively. In the beginning choose initial

state. The action is selected by using ε greedy to move to

next state and calculate the reward according to equation

(18). Save state, next state, action, reward, and done in

replay memory B. Take a sample random mini batch from

memory B then Calculate

{

 ́ (́ ́)

Use a gradient descent algorithm to optimize the parameter

values of DNN to minimize the loss, where the loss

function is calculated by:

Finally, after C steps, update ́ . The DQN algorithm

is showed in Algorithm 7 in details.

Algorithm 7: Deep Q Network [30]

Input: State is offloading decision

Output: Optimal offloading decision

1: Generate target and evaluation Q network

 with a random parameter θ , θ´

 2: Generate the empty replay memory with size m

 3:

 4: Choose initial state

 5:

 6: With probability ε select a random action

 7: otherwise select

 8: Execute and calculate

according to eq. (19)

 9: calculate according to eq. (20)

10: if is terminal state

11: done is true

Algorithm 6: Q learning [29]

 ,

 1:

 1:

 2:

 3: Choose initial

 4: With probability ε select a random action

 5: otherwise select

 6:

 7: Execute and calculate

 according to eq. (19)

 8: Calculate according to eq. (20)

 9: if is terminal state

10: break

11: end

12: [

]

13:

14: end

15: end

16:

17: return

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

59

12: end

13: Save transition (, , ,

 ,done) in memory

18: Sample random minibatch of transitions from memory

14: Calculate according to eq. (22).

15: Calculate loss according to eq. (23).

16: Make ́ after each C steps

17:

18: if done is true

19: break

20: end

21: end

22: end

4.6 Distributed Deep Neural Network strategy

A distributed deep neural network (DNN)-based task

offloading algorithm, Algorithm 8, [26][41]-[43] is

performed to solve the problem of eq. (16), where it

consists of multiple deep neural network (DNN) as shown

in Fig. 4. DNNs have the same neural network as number

of layers, nodes, and activation function, where is number

of DNNs. In addition, the memory experience is shared

between all DNNs. At each episode t, DNNs take each

input state to produce different binary offloading

according to

, where

is a parametrized

function, is the parameter of DNN, = {1, 2,

…, } is the index of DNN. Then the offloading decision

with the lowest cost is selected as the output according to

eq. (24) then save it in the memory experience to use it in

the training of distributed DDN algorithm.

Fig. 3. DQN with the environment MEC [30]

Algorithm 8: Distributed DNN-Based Task Offloading [26]

 Input: different data size

Output: The best offloading decision

1: Assign random parameters to all DNNs

2: Generate an empty memory of size p

 3:

 4: Enter the same to each DDNs

5: Create the output offloading decision from all DNNs

6: Select the offloading decision according to eq. (24)

 7: Save (,
) in the memory

 8: Select a random mini batch from the memory

 9: train DNN and update

10: end

Fig. 4. Distributed DNN-based task offloading architecture

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

60

Neural Network

The neural networks are used in deep Q network

and a distributed deep learning-based task offloading have

the same number of inputs and outputs, and layers, and the

same activation function, where the neural networks is

consisting of four fully connected linear layers: Input and

output layer have nodes, two hidden layers where the

first hidden layer has 120 nodes, and the second hidden layer

has 80 nodes. The activation function of the hidden layers

and the output layer are Relu and Sigmoid, respectively [28]-

[30], and Adam algorithm is the optimizer. But they have

different loss function, where the loss function in DQN is a

mean square error [30] and a cross entropy loss function in

Distributed DNN [41][42].

Table 3 :Simulation Parameters

MEC Parameters [30]
Number of wireless devices N 4

Number of tasks M 3

Bandwidth B 20 MHz

Transmitted power 100 mw

Background noise - 100 dBm

Size of data (0, 10) MB

Number of CPU cycles per bit 1000 Cycles/bit

CPU frequency of each device
 0.6 GHz

Energy consumption per CPU cycle
(0, 20 x 1011)

J/Cycle

CPU frequency of edge server 100 GHz

Q learning Parameters

Number of episodes 4000

Number of steps 8

Learning rate 0.01

Discount factor 0.99

DQN Parameters

Number of episodes 10000

Memory size 1024

Batch size 32

Learning rate 0.1

Discount factor 0.99

Greedy value ε 1

Minimum greedy value 0.1

Decay greedy per episode 0.995

Number of steps to update target network 100000

Distributed DNN Parameters

Memory size 512

Batch size 128

Number of DNN 5

Learning rate 0.0001

5. RESULTS

In this section, we study the result of each strategy

which explained in section 4 to produce the offloading

decision. Our results were simulated at Google

Colaboratory with Intel(R) Xeon(R) CPU @ 2.30GHz

Processor and 12.0 GB available RAM. Python is the

simulator of our work, where PyTorch library are used to

establish the neural network. The parameters of the

simulation in Tables 3.

5.1 Total cost with different number of users

In this section, we compare between different strategies

to minimize the total cost. First, we calculate the total cost

with different number of users. From Fig. 5, it is noted that

the full offloading strategy is better than full local, the

optimal offloading is complex when number of users

increase, where the number of iterations to find the optimal

offloading decision equal 2NM, when number of devices is

7 and number of tasks 3 the iteration is 221=2097152. The

Deep learning became more able to deal with more

complex problem. As shown in figure, Q learning, DQN,

and a distributed DNN algorithms achieve the optimal

offloading. However, Q learning, when number of devices

increase the Q table size increases, so it can't update the Q

table. the DQN and distributed DNN algorithms solved the

problem of increasing number of users. The results of

simulation (4 devices with 3 tasks for each device) show

that the total cost in terms of time and energy consumption

in Q learning, DQN and, Distributed

Fig. 5:Total cost when using different number of devices.

DNN algorithms is equal to the optimal offloading

strategy, furthermore they reduce the total cost up to 63.7%

when compared to full local strategy, also up to 21.8%

when compared to full edge strategy. However, the DQN

algorithm would need to train for a longer time than a

distributed DNN when number of user increases.

In this subsection, we explain the parameters which

effect on the convergence performance of a distributed

DNN and DQN algorithms. There are different values of

each parameter which are applied then we select the best

value for our simulation

5.1.1 Distributed DNN Parameters

In this subsection, the effects of various parameters on

the total cost will be discussed, which are number of DNN,

Memory size, Batch size, Learning rate. The effect of

increasing the number of DNNs on convergence

performance is shown in Fig.6 (a) It is observed that the

distributed DNN algorithm's convergence performance

improves as the number of DNNs increases. Furthermore,

when we use a single DDN, it can't learn anything from the

data that comes out from itself. So, the number of DDNs is

at least 2 DNNs.

 In Fig.6(b), the total cost is plotted when memory

size of a distributed DNN differs from 512 to 2048. The

figure shows that the smaller memory size can achieve

faster convergence. So, the memory size is set as 512,

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

61

where it is the proper value for the better convergence

performance in a distributed DNN simulation.

 In Fig.6 (c), the simulation results are shown with

batch size varying from 32 to 128, where batch size is the

number of samples which taken randomly from the memory

size. The figure show that when the batch size is small, the

converges is fastest, but with the low performance. It

because small batch can only store small experience. In

addition, it is true that the training takes longer time with a

larger batch. Thus, from numerical results are showed in

figure, we select batch size as 128 in distributed DNN

simulation.

 The effect of different learning rate ranging from 0.1

to 0.0001 on the convergence of distributed DNN algorithm

is shown in Fig.6 (d) The convergence speed is faster when

the learning rate increases. However, when learning rate

increases to 0.1 or .01, the converge is faster but the local

optimum occurs and lower performance. So, the learning

rate is set to the proper value according to the situations. In

a distributed DNN simulation, the proper value of learning

rate is 0.0001.

Fig.6 (a) Impacts of different numbers of DNNs

Fig.6 (b) Impacts of different Memory Size

Fig.6 (c) Impacts of different Batch Size

Fig.6 (d) Impacts of different Learning Rate

5.2 Deep Q Network Parameters

We also adjusted the parameters of Deep Q Network

algorithm, which effect on the cumulative reward. Fig.7 (a)

shows the impact of learning rates varying from 0.1 to

0.001 on the cumulative reward. From the figure, we can

observe cumulative reward remained stable around 6 at the

end. Furthermore, we discover that when learning rate is

0.01, the curve converges about 6000 learning steps. In

addition, when learning rate is 0.001, the convergence

process will reach a local optimal solution. So, learning rate

is set to 0.1.

 The impacts of various memory size ranging from

512 to 2048 on convergence performance are shown in

Fig.7 (b). from the figure, when memory size is 512, the

convergence performance results in a local optimal

solution. Hence, the memory size set to 1024.

Fig.7 (a) Impacts of different Learning Rate

Fig.7 (b) Impacts of different Memory Size

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

62

Fig.7 (c) Impacts of different Batch Size

Fig.7 (c) depicts how batch size effects on the

cumulative reward and convergence performance.

Although, the convergence happens more quickly as the

batch size increases, it can be seen from the figure that the

performance is higher when the batch size is 128 compared

to 32 or 64. So, the batch size is set to 128 in DQN

simulation.

In Fig. 8, it shows that total cost by using Distributed

DNN and Deep Q Network algorithm. From figure, it is

shown that after 6000 episodes became DQN and a

distributed DNN have the same value of the total cost equal

after 6000 learning steps. However, a distributed DNN

generates the offloading decision for 4 devices with 3 tasks

for each device (in 4 milliseconds) faster than DQN

algorithm (in 8 milliseconds).

Fig.8 The convergence performance of Distributed DNN and DQN

algorithm

6. CONCLUSION AND FUTURE WORK

This paper proposed a resource allocation and task

offloading model for multiple-device, multiple-task MEC

system. Furthermore, the model is formulated as a problem

with the objective of decreasing the total cost in terms of

time of computation and energy consumption. The

proposed problem is solved by applying the six strategies,

which they are compared with the optimal offloading

strategy. Although, optimal strategy is an important

guideline for the six strategies used, the optimal strategy

does not scale as the number of devices increases. The

simulation results show that DQN and a distributed DNN

algorithms can outperform full offloading and full local

strategies by up to 21.8%, and 63.7% of the total cost.

Furthermore, the distributed DNN generates the optimal

offloading decision faster than DQN in 4 milliseconds, but

DQN in 8 milliseconds. So, it thinks that the distributed

DNN algorithm can be further enhanced to improve real

time offloading of MEC system.

In the future, we will investigate the task offloading

problem in the MEC system with multiple edge servers,

multiple devices, and multiple tasks. In addition, the study

will focus on the mobility of the wireless devices, which

enables the devices to move between the different Base

Stations while the task is being offloading.

REFERENCES

[1] Fu, Zhangjie, et al. "Enabling personalized search over encrypted
outsourced data with efficiency improvement." IEEE transactions on
parallel and distributed systems 27.9 (2015): 2546-2559.

[2] Alghamdi, Ibrahim. Computation offloading in mobile edge
computing: an optimal stopping theory approach. Diss. University
of Glasgow, 2021.

[3] Yadav, Rahul, et al. "Adaptive energy-aware algorithms for
minimizing energy consumption and SLA violation in cloud
computing." IEEE Access 6 (2018): 55923-55936.

[4] Miettinen, Antti P., and Jukka K. Nurminen. "Energy efficiency of
mobile clients in cloud computing." 2nd USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 10). 2010.

[5] Wan, Shaohua, et al. "Efficient computation offloading for Internet
of Vehicles in edge computing-assisted 5G networks." The Journal
of Supercomputing 76.4 (2020): 2518-2547.

[6]

[7] Chen, Xu. "Decentralized computation offloading game for mobile
cloud computing." IEEE Transactions on Parallel and Distributed
Systems 26.4 (2014): 974-983.

[8] Fernando, Niroshinie, Seng W. Loke, and Wenny Rahayu. "Mobile
cloud computing: A survey." Future generation computer
systems 29.1 (2013): 84-106.

[9] Fernando, Niroshinie, Seng W. Loke, and Wenny Rahayu. "Mobile
cloud computing: A survey." Future generation computer systems
29.1 (2013): 84-106.

[10] Zhang, Ke, et al. "Energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks." IEEE access 4 (2016):
5896-5907.

[11] Abbas, Nasir, et al. "Mobile edge computing: A survey." IEEE
Internet of Things Journal 5.1 (2017): 450-465.

[12] Pham, Quoc-Viet, et al. "A survey of multi-access edge computing
in 5G and beyond: Fundamentals, technology integration, and state-
of-the-art." IEEE Access 8 (2020): 116974-117017.

[13] Cao, Bin, et al. "Intelligent offloading in multi-access edge
computing: A state-of-the-art review and framework." IEEE
Communications Magazine 57.3 (2019): 56-62.

[14] Omland, Sondre Eide. Deep Reinforcement Learning for
Computation Offloading in Mobile Edge Computing. MS thesis.
The University of Bergen, 2022.

[15] Mao, Yuyi, et al. "A survey on mobile edge computing: The
communication perspective." IEEE communications surveys &
tutorials 19.4 (2017): 2322-2358.

[16] Mach, Pavel, and Zdenek Becvar. "Mobile edge computing: A
survey on architecture and computation offloading." IEEE
communications surveys & tutorials 19.3 (2017): 1628-1656.

[17] Sadatdiynov, Kuanishbay, et al. "A review of optimization methods
for computation offloading in edge computing networks." Digital
Communications and Networks (2022).

[18] Zhang, Jing, et al. "Joint computation offloading and resource
allocation optimization in heterogeneous networks with mobile edge
computing." IEEE Access 6 (2018): 19324-19337.

[19] Mao, Yuyi, Jun Zhang, and Khaled B. Letaief. "Dynamic
computation offloading for mobile-edge computing with energy
harvesting devices." IEEE Journal on Selected Areas in
Communications 34.12 (2016): 3590-3605.

[20] Salmani, Mahsa, and Timothy N. Davidson. "Uplink resource
allocation for multiple access computational offloading." Signal
Processing 168 (2020): 107322.

Vol.52, No2 April 2023, pp: pp:51-63 Rania Azouz et al Engineering Research Journal (ERJ)

63

[21] Elgendy, Ibrahim A., et al. "Resource allocation and computation
offloading with data security for mobile edge computing." Future
Generation Computer Systems 100 (2019): 531-541.

[22] Elgendy, Ibrahim A., et al. "Efficient and secure multi-user multi-
task computation offloading for mobile-edge computing in mobile
IoT networks." IEEE Transactions on Network and Service
Management 17.4 (2020): 2410-2422.

[23] Wan, Zhilan, et al. "Joint computation offloading and resource
allocation for NOMA-based multi-access mobile edge computing
systems." Computer Networks 196 (2021): 108256.

[24] Pławiak, Paweł, et al. "DGHNL: A new deep genetic hierarchical
network of learners for prediction of credit scoring." Information
Sciences 516 (2020): 401-418.

[25] Yang, Xiao, et al. "Communication-constrained mobile edge
computing systems for wireless virtual reality: Scheduling and
tradeoff." IEEE Access 6 (2018): 16665-16677.

[26] Ali, Zaiwar, et al. "Smart computational offloading for mobile edge
computing in next-generation Internet of Things networks."
Computer Networks (2021): 108356.

[27] Khayyat, Mashael, et al. "Advanced deep learning-based
computational offloading for multilevel vehicular edge-cloud
computing networks." IEEE Access 8 (2020): 137052-137062.

[28] Li, Yunzhao, et al. "Distributed edge computing offloading
algorithm based on deep reinforcement learning." IEEE Access 8
(2020): 85204-85215.

[29] Huang, Liang, Suzhi Bi, and Ying-Jun Angela Zhang. "Deep
reinforcement learning for online computation offloading in wireless
powered mobile-edge computing networks." IEEE Transactions on
Mobile Computing 19.11 (2019): 2581-2593

[30] Elgendy, Ibrahim A., et al. "Joint computation offloading and task
caching for multi-user and multi-task MEC systems: reinforcement
learning-based algorithms." Wireless Networks 27.3 (2021): 2023-
2038.

[31] Elgendy, Ibrahim A., et al. "Advanced deep learning for resource
allocation and security aware data offloading in industrial mobile
edge computing." Big Data (2021).

[32] Chen, Liming, et al. "Intelligent Mobile Edge Computing Networks
for Internet of Things." IEEE Access (2021).

[33] Yang, Shicheng, Gongwei Lee, and Liang Huang. "Deep Learning-
Based Dynamic Computation Task Offloading for Mobile Edge
Computing Networks." Sensors 22.11 (2022): 4088.

[34] Chen, Wen, Yuhu Chen, and Jiawei Liu. "Service migration for
mobile edge computing based on partially observable Markov
decision processes." Computers and Electrical Engineering 106
(2023): 108552.

[35] Liao, Linbo, et al. "Online computation offloading with double
reinforcement learning algorithm in mobile edge computing."
Journal of Parallel and Distributed Computing 171 (2023): 28-39.

[36] Bi, Suzhi, et al. "Lyapunov-guided deep reinforcement learning for
stable online computation offloading in mobile-edge computing
networks." arXiv preprint arXiv:2010.01370 (2020).

[37] Chen, Wen, et al. "A multi-user service migration scheme based on
deep reinforcement learning and SDN in mobile edge computing."
Physical Communication (2021): 101397.

[38] Zhu, Hao, et al. "Deep reinforcement learning for mobile edge
caching: Review, new features, and open issues." IEEE Network
32.6 (2018): 50-57.

[39] Jiang, Kai, et al. "A q-learning based method for energy-efficient
computation offloading in mobile edge computing." 2020 29th
International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2020.

[40] Chen, Juan, and Zongling Wu. "Dynamic Computation offloading
with Energy Harvesting Devices: A Graph-based Deep
Reinforcement Learning Approach." IEEE Communications Letters
(2021).

[41] Huang, Liang, et al. "Deep reinforcement learning-based task
offloading and resource allocation for mobile edge computing."
International Conference on Machine Learning and Intelligent
Communications. Springer, Cham, 2018.

[42] Huang, Liang, et al. "Distributed deep learning-based offloading for
mobile edge computing networks." Mobile networks and
applications (2018): 1-8.

[43] Huang, Liang, et al. "Multi-server multi-user multi-task computation
offloading for mobile edge computing networks." Sensors 19.6
(2019): 1446.

[44] Mukherjee, Mithun, et al. "Distributed deep learning-based task
offloading for UAV-enabled mobile edge computing." IEEE
INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2020.

[45] Wen, Yonggang, Weiwen Zhang, and Haiyun Luo. "Energy-optimal
mobile application execution: Taming resource-poor mobile devices
with cloud clones." 2012 proceedings IEEE Infocom. IEEE, 2012.

