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Abstract: Every day, the number of wireless devices, and IoT applications increases, which require extensive computational 

resources. Therefore, it is possible to mitigate the lack of computational resources in wireless devices by using Mobile Edge 

Computing (MEC). MEC is a modern technology that brings the capabilities of Cloud Computing at the edge of a mobile network to 

perform computationally intensive tasks, which reduces the delay and prevents end to end communication with the remote Cloud. 

This paper proposed a task offloading model for multiple-device, multiple-task MEC system, the model is formulated as an 

optimization problem with the objective of reducing time of computation and energy consumption. However, the complexity rapidly 

increases as more devices are added to the system, thus the proposed problem is solved by introducing five strategies which are full 

local computing, full offloading computing, random offloading, Q learning, Deep Q network, and a distributed DNN, which are 

compared with the optimal offloading strategy. The results (4 devices with 3 tasks for each device) show that the total cost in terms 

of time and energy consumption in Q learning, DQN and, Distributed DNN algorithms is near to the optimal offloading strategy, 

furthermore, these strategies reduce the total cost up to 63.7% when compared to full local strategy, also up to 21.8% when compared 

to full edge strategy. However, the learning speed of distributed DNN is faster than Deep Q Network, when number of devices 

increases. In addition, adistributed DNN generates the offloading decision (in 4 milliseconds) faster than DQN algorithm (in 8 

milliseconds).  
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1. Introduction 

In the past, mobile phones was limited to making calls 

and sending text messages. With the rapid development of 

mobile networks and technology, the smart phones develop 

for use in a variety of applications, such as Face 

Recognition, Augmented Reality, and Virtual Reality 

[1][2]. Although, the smart phones and wireless devices 

have computational resources to run these applications, they 

are unfit to work efficiently due to most of these 

applications require computationally intensive resources 

[3][4]. To mitigate the resource limitations of wireless 

devices, computationally intensive tasks can be offloaded to 

other resourceful devices. Hence, the concept of 

computation offloading was born [5]. 

Mobile Cloud Computing is considered popular method 

which used in offloading, where the applications or tasks 

are offloaded to the cloud with intensive resources through 

the wireless channel to reduce load and extend battery life 

of wireless devices [6]-[8]. However, because of the long 

distance between wireless devices and cloud servers, 

offloading to the cloud requires significant latency and 

places an additional burden on mobile network. So, it is not 

suitable to execute real time applications. 

Mobile Edge Computing (MEC) is considered an 

effective solution to address the problems associated with 

Mobile Cloud Computing. In MEC, Cloud services and 

resources are being placed near wireless devices at the 

network's edge, at locations such as Wi-Fi, access points, or 

the Base Station (BS) [9]. So, MEC can provide low latency 

and high bandwidth, which enables to execute real time 

applications [10][11]. Many studies use the principle of task 

offloading on the MEC to reduce the energy consumption, 

efficiently allocate the resources, minimize the time of 

computation, maximize the system utility, and reduce the 

total cost of wireless device. However, getting the optimal 

offloading decision in multiple-device and Multiple-task 

MEC system is a great challenge. Here, Deep learning and 

Machine learning can be used as efficient techniques for 

offloading decision [12]. 

Deep learning algorithms based on Neural Network are 

a relatively recent field research that has seen great 

improvement in the last decade and will continue to develop 

as the Deep learning became more able to deal with more 

complex problem. Hence, Deep Q network and a distributed 

Deep Neural Network-based task offloading algorithms is 

developed to generate the optimal offloading decision [13]. 

The summery of the main contributions in this paper are as 

following: 

 Task offloading and resource allocation model is 

formulated as an optimization problem with the 

objective of reducing the total cost in terms of time of 

computation and energy consumption for multiple-

device, multiple-task MEC system. 

 The optimization problem is modified to an equivalent 

form of deep learning techniques such as Deep Q 

network (DQN) and distributed Deep Neural Network 

(DNN)-based task offloading to solve the problem 
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 The simulation results show that the total cost in terms 

of time and energy consumption in DQN and, 

Distributed DNN algorithm is near to the optimal 

offloading strategy and reduce the total cost up to 

63.7% when compared to full local strategy, also up to 

21.8% when compared to full edge strategy. In 

addition, a distributed DNN are used to determine the 

best policy of accelerate learning.    

The rest of this paper is organized as follows. Section 2 

is the related work of computation offloading to MEC 

server. Section 3 includes the mathematical operation which 

used to solve the problem. Section 4 includes the 

implemented strategies. Section 5 shows the simulation and 

the results of our model. Section 6 shows the conclusion of 

this paper and the future work. 

2. RELATED WORK 

In recent year, computation offloading in MEC systems 

has become an important research topic in many scientific 

papers due to increasing number of wireless devices and 

IoT applications which required an extensive computation 

and resources. So, in this section, we will mention the 

previous studies about task offloading for edge computing. 

In section 2.1, we will mention the studies, which use the 

traditional optimization methods to solve the problem. 

Recently, there are many studies, which solved the problem 

by using machine learning and deep learning, as in section 

2.2. The computation offloading may be binary or partial 

offloading to the edge server. where binary offloading is 

meaning that the whole data size is offloaded to the edge 

server or locally execute at a wireless device, while the data 

size is divided where a subset of the data is executed locally 

or remotely, this is meaning a partial offloading [14]. In this 

study, we executed a binary computation offloading. Some 

of computation offloading studies are categorized by 

number of MEC servers, users, and tasks. In [19][24][25] 

computation offloading model is single user. Others study 

multi users, multi tasks, and multi MEC servers [21]. 

2.1 Traditional optimization methods 

The main objectives of task offloading minimize 

required time to execute the task, and energy consumption 

of wireless devices. Many of studies used the traditional 

optimization method to achieve these objectives [15][16]. 

Zhang et al. [17] used game theory to solve the optimization 

problem of task offloading and resource allocation to 

minimize the latency and energy consumption. The main 

goal of Mao et al. [18] is minimizing the latency and task 

failure. The author used the Lyapunov optimization to 

achieve this goal. However, they did not consider the 

energy consumption due to the energy harvesting is used as 

renewable energy. Salmani et al. [19] applied the 

optimization method to minimize the energy consumption 

where the offloading may be partial or binary offloading for 

independent tasks. Elgendy et al. [20][21] joint security, 

computation offloading, and resource allocation, in addition 

the author used optimization method to solve the problem, 

where the author in [18] assumed that the model has single 

task. In addition, the objectives are to minimize the latency 

and energy consumption. The extension of [20] is [21] 

where the model has multi tasks, where the transmitted data 

was be compressed to minimize the latency. Wan et al. [22] 

used NOMA to offload the task to MEC server, the 

objective is minimizing the total delay of the computation 

of all tasks, they used a heuristic algorithm to solve the 

optimization problem. The summary of traditional 

optimization methods is mentioned in TABLE 1, as it 

shows the open research areas and the drawbacks in each 

paper. 

  
TABLE 1: Summary of traditional optimization methods 

Security Servers Tasks Devices Objective Algorithm Proposed method Reference 

No Single Multiple Multiple Minimize the 

latency and 

energy 

consumption 

Game theory A distributed joint computation 

offloading and resource allocation 

optimization method 

Zhang 2015 

[17] 

No Single No Single Minimize the 

latency 

Lyapunov 

optimization 

investigate a green MEC system 

with energy harvesting devices 

and develop an effective 

computation offloading strategy 

Mao 2016 

[18] 

No Single Single Multiple Minimize the 

energy 

consumption 

Optimization 

method 

address the uplink communication 

resource allocation for offloading 

systems that exploit the full 

capabilities of the multiple access 

channel. 

Salmani 2020 

[19] 

Yes 

 

 

Single Single Multiple Minimize energy 

and latency 

Optimization 

method 

A resource allocation and 

computation offloading model 

with data security 

Elgendy 2019 

[20] 

Yes Single Multiple Multiple Minimize the cost Optimization 

method 

A Multi-User Multi-Task 

Computation Offloading model 

Elgendy2020 

[21] 

No Multiple 

 

 

 

Multiple Multiple Minimize the 

delay 

a heuristic 

algorithm 

NOMA-based multi-access MEC 

system with multiple MEC servers 

and multiple users 

Wan 2021 

[22] 

https://www.sciencedirect.com/topics/computer-science/multiple-access-channel
https://www.sciencedirect.com/topics/computer-science/multiple-access-channel
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2.2 Deep learning algorithms 

Simultaneously, Machine learning and Deep learning 

have been widely applied in a variety of MEC offloading 

fields. Due to the benefits of no previous information and 

low complexity [12][23]. Ali et al. [25] minimize the total 

cost by using an energy efficient and faster deep learning 

based offloading technique (EFDOT). The author model 

has a single user with a single task where the task is divided 

it into optimal numbers of components and each component 

either execute inside the local device or offloading to edge 

server. In [26], the author used edge computing and cloud 

computing to minimize the total cost in terms of latency and 

energy consumption of autonomous vehicles. The author 

used parallel deep neural networks to calculate the optimal 

offloading decision.     

Recently, deep reinforcement learning is used to make 

computing offloading [27][28]. Li et al. [27] used Deep 

Deterministic Policy Gradient (DDPG) algorithm to 

minimize the delay, there are multiple tasks, where each 

task selects the subnet edge according to type of tasks. 

Huang et al [28] used the deep reinforcement learning to 

maximize the computation rate. Elgendy et al. [29] used Q 

learning and deep Q learning to solve the optimization 

problem and calculate the optimal offloading decision 

which reduce the latency and energy consumption. When 

the task is transferred to the edge server to compute it 

through the wireless channel, the attackers may attack the 

task, so some of papers takes in calculations the security 

[30][31]. In [30], before the task transmit to the edge, the 

task is encrypted to reduce the attacks. a standard 

symmetric cryptography algorithm (AES) is used to encrypt 

task. In [32], the author was used deep supervise learning to 

find the offloading decision and bandwidth allocation. This 

algorithm trains faster, but it needs the labels data. 

Moreover, he used single task for each device and single 

server. In [33], the author discussed the issue of service 

migration when hosting multiple users and multiple edge 

servers to decide to move a continuous service from the 

edge server to other edge server, so he proposed a Deep 

Recurrent Q Network-based service migration decision 

algorithm (DRQNSM) to reduce time and energy 

consumption while making sure reliable, stable, and 

continuous services during user movement. To compare 

DRQNSM with the classic reinforcement learning. In [34], 

the author focused on offloading of tasks with varying 

priorities for multi-device, multi-task MEC system. Hence, 

the author proposed a double reinforcement learning 

computing offloading (DRLCO) algorithm which makes the 

decision on offloading, transmission power, and CPU 

frequency to reduce energy and time. The summary of the 

deep learning algorithms is mentioned in TABLE 2, as it 

shows the open research areas and the drawbacks in each 

paper. 

    
TABLE 2: Summary of deep learning algorithms 

Security Servers Tasks Devices Objective Algorithm Proposed method Reference 

No Single Single Single Minimize 

the cost 

Deep Learning Faster deep learning based offloading 

technique to minimize the overall cost 

Ali 2021 

[25] 

Yes Multiple Single Multiple Minimize 

the total cost 

Distributed Deep 

Learning algorithm 

Distributed Deep Learning algorithm 

used to find the optimal offloading 

decision 

Khayyat 

2020 [26] 

Yes Multiple Multiple Multiple Minimize 

delay 

Deep Deterministic 

Policy Gradient 

(DDPG) 

Deep reinforcement learning was used to 

solve the difficult computation offloading 

issue 

Li 2020 [27] 

No Single Single Multiple Maximize 

computation 

rate 

Deep reinforcement 

learning-based 

online offloading 

(DROO) 

Deep reinforcement learning was used 

for the online offloading decision 

Huang 2019 

[28] 

No Single Multiple Multiple  

Minimize 

the cost 

Q Learning, Deep Q 

Network 

Joint computation offloading and task 

caching 

Elgendy 

2021 [29] 

Yes Single Multiple Multiple Minimize 

time and 

energy 

Deep Q Network Security-aware data offloading and 

resource allocation model 

Elgendy202

1 [30] 

No Multiple Single Multiple Minimize 

the cost 

Deep Q Network, 

Double Deep Q 

Network 

A novel service migration 

scheme to support mobility 

Chen 2021 

[31] 

No single single Multiple Minimize 

the system 

utility of 

MEC 

network 

Deep learning Deep supervised learning-based 

computational offloading algorithm 

(DSLO)was used for computational tasks 

in MEC networks 

Yang 2022 

[32] 
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From the above studies, we used six strategies to 

decrease the total cost in terms of energy consumption and 

latency then compare between them through the learning 

and the testing speed, where the model has multiple users 

and multiple tasks. 

3. SYSTEM MODEL 

We begin by assuming that there are   wireless devices, 

as indicated by 

                                                                      (1) 

where each device has independent   tasks, which can 

be executed locally or by offloading to a MEC server, as 

indicated by 

                                                                  (2) 

In addition, as shown in Fig.1, there are a Base Station 

with a MEC server, and a wireless devices connected to a 

Base Station via a wireless channel. Furthermore, the band 

width will be equally shared between the wireless devices 

which decide to offload the tasks.  

       The decision of offloading for task n of user m is 

denoted by           , as shown in eq. (3), where 

       means that the device n decides to execute its task 

m locally, and        means that the user n decides to 

offload its task m to a MEC server.   

    

 {
                      

                                
                               

The next subsection will explain the computation model 

and the optimization problem by details. 

 
Fig. 1: System model architecture [20] 

 

3.1 Computation model 

In the following section, we will discuss the formulas 

used to determine the computation time, energy 

consumption and cost used in varying strategies. 

3.1.1 Local computing model 

In the local computing, the user n selects to compute its 

task m locally by using its computing resources and the 

time required to compute this task locally can be calculated 

by     
  according to eq. (4): 

    
  

      

  
 

                                                                     

Where   
  is the CPU frequency (cycle/s) of wireless 

device n,      is the size of task m of user n (bit), and  

  number of cycles required to execute one bit.  

       The energy required to compute the task m of user 

n according to eq. (5): 

    
                                                                 (5) 

Where     is the consumed energy of user n per CPU 

cycle,            
    [44].  

The following formula can be used to determine the 

total cost of local computing: 

       
    

     
    

     
                                      (6) 

which is derived from eq. (4) and eq. (5), where   
  and 

  
  [   ] are the weights of time and energy 

consumption, respectively. Where the sum of two weights 

equals 1. If   
     and   

  = 0, this means that the energy 

consumption is more sensitive than the time. If   
     

and   
  = 1, this means the time is more sensitive than the 

energy, especially when the existing application is real-

time application such as online gaming. So, the values of 

weights are set according to the application required to 

execute. 

3.1.2 Edge computation model 

In Edge computation, first, the user n selects to offload 

its task m to the Base Station via the wireless channel, then 

execute it in MEC server. The uplink data rate is required 

to offload the task to MEC server is calculated according to 

eq. (7): 

             
      

   

                                                        

Where, B is the total bandwidth of a wireless channel, 

shared between all wireless devices select to offload,    is 

the density of noise power, and     is the transmission 

power of device n. The radio resource allocation at the 

same cell is based on orthogonal frequency division 

No Multiple single Multiple Minimize 

time and 

energy 

consumption 

Deep learning Deep Recurrent Q Network-based service 

migration decision algorithm 

(DRQNSM) to reduce time and energy 

consumption 

Chen 2023 

[33] 

No single Multiple Multiple Minimize 

time and 

energy 

Deep 

Reinforcement 

learning 

double reinforcement learning computing 

offloading (DRLCO) algorithm which 

makes the decision on offloading, 

transmission power, and CPU frequency 

Liao 2023 

[34] 
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multiple access (OFDMA) where orthogonal frequency 

prevents or reduces interference between uplink channel 

[21][26],    is channel gain which follows Rician fading 

distribution, which determined by eq. (8) according to [35], 

Where  ̅  is the average channel gain which determined 

by eq. (9): 

        ̅                                                                 (8) 

 ̅     (
       

      
)

  
                                                     (9) 

Where   = 3  gives the antenna gain, 3 x 10
8
 is the 

speed of light,   =915 MHZ gives carrier frequency,   = 

120 + 15(n - 1) , for n = 1, · · · , N, where     is the 

distance between wireless device n and Base Station,    is 

the path loss exponent.  

The transmission time required to upload the task to the 

Base Station is calculated according to eq. (10): 

    
  

    

  
                                                                (10) 

After the task offload to Base Station, MEC server 

begin to execute the task by using the computation 

resources of MEC server. Where the time required to 

execute the task in MEC server is determined according to 

eq. (11): 

     
     

      

  
                                                            (11) 

Where   
  is the CPU frequency (cycle/sec) of MEC 

server that is allocated to device  , it is determined by 

divided the CPU frequency of MEC server F on number of 

offloading devices. Furthermore, the time required to 

download the executed task from MEC server to wireless 

device is neglected due to the data size of the executed task 

is small. The total time from offloading to executing the 

task is determined according to eq. (12):   

    
      

      
                                                      (12) 

Where     
  and     

    are determined by eq. (10), (11) 

respectively. Energy consumption is needed to offload the 

task to MEC server is defined as     
 :  

    
         

                                                           (13) 

Where    is the transmitted power (watt). 

The total cost to offload the user's n task m is determine 

according to eq. (14): 

       
    

     
    

     
                                     (14) 

Where   
  and   

  are the weights, which mentioned in 

the local computing. 

3.2 Optimization Problem 

The objective of our model is to decrease the total cost 

of time and energy consumption, where the total cost of all 

tasks is determined according to eq. (15): 

     
      ∑ ∑(      )        

 

 

   

 

   

             
                                            

Where if the user n selects to offload its task m, the 

offloading decision is set to       . Otherwise, if the 

user n selects to locally execute its task m, the offloading 

decision is set to       . 

The offloading decision as optimization problem to 

decrease the total cost is considered according to: 

  
       [∑ ∑(      )        

 

 

   

 

   

             
 ]       

     

s.t       [           
 ]                                      

           ∑ ∑           
   

 
                          C2 

            ∑ ∑        
    

   
 
                         C3 

                                                          C4       (16) 

Where C1 refers to the required energy to execute the 

task remotely is less than the required energy to execute 

the task locally. C2 shows that when the users decide to 

offload their tasks must the sum of data rate of all wireless 

devices not exceeding the total uplink data rate R. C3 

forbids that the sum of computation resources of MEC 

server to wireless devices to execute the tasks remotely 

must not be  greater than the total available computation 

resources of MEC server F, where F is CPU frequency of 

MEC server.C4 shows that the offloading decision is 

binary where each wireless device only choose to execute 

the tasks locally or remotely.  

4. STRATEGIES 

In this paper, there are six strategies applied to execute 

the tasks. We will explain each strategy in detail as seen 

below. 

4.1 Full local computing strategy 

Full local computing, Algorithm 1, is meaning that all 

wireless devices select to execute all tasks locally, where 

the offloading decision is set to        , such that the 

offloading decision vector is   [        ].We begin to 

initialize the input parameters used to calculate the time 

,eq.(4), the energy consumption, eq.(5), and the cost of 

each task, eq. (6), then sum the cost of all tasks to find the 

total local cost. 

4.2  Full edge computing strategy 
The full edge computing strategy, Algorithm2, is 

meaning that all users select to execute their task at a MEC 

sever, where the offloading decision is        , such that 

the offloading decision vector is    [        ]. Then we 

initialize the input parameters such that size of computed 

data     , a CPU cycles of MEC server F, the transmitted 
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power   , the channel band width B.W, …. We begin to 

determine the channel gain of each device according to eq. 

(8) and (9) to determine uplink date rate of each device 

according to eq. (7), where the band width of the wireless 

channel is shared equally between the devices. Then we 

determine the time and the energy consumption for each 

task of the user according to eq. (12) and (13) respectively. 

Note that the resources allocation of MEC server F are 

divided equally between all tasks.in the end, calculate the 

cost of each task then sum together to calculate the total 

cost. 

Algorithm 1: Full local computing strategy 

                   
    ,   

    
  

             
       

1:      
        

                 

3:                    

 4:                                 
                       

5:                                              
  

                                                                                             

 6:                                        
                       

7:                   
           

              
   

8:             
      

Algorithm 2: Full edge computing strategy 

                                 ,   
    

  

               
       

  1:      
        

                  

  3:                    

  4:                                                

                                                                                        
  

 

 
            

 5:                                                               

                                                              

 7:                                 
                        

 8:                                               
               

 9:                                        
                        

 10:                
           

             
   

 11:             
      

4.3 Random offloading strategy 

Random offloading strategy, Algorithm 3, is meaning 

that each device selects randomly to execute each task 

locally or offloading to MEC server, where the offloading 

decision can be composed from a variety of ways, such as 

   [            ].Then calculate the total cost      
     . 

Finally, return the best total cost      
 
   
     . 

Algorithm 3: Random offloading strategy 

             

               
         

         
         

                

  2:                                                     

  3:                             
                                 

 4:                        
           

 
   
          

                                                                                                         

 5:                             
            

                                

 6:               
       

 

Algorithm 4: Total Cost 

                
                     ,   

    
  

             
       

 1:                                    

 2:       
        

                  

 4:                    

  5:                        

  6:                                        
                       

 7:                                                         
  

                     

 8:                                               
                       

  9:                          
           

             
   

10:             else 

11:                                                       

               
  

 

 
  

12:                                             

                          

                                                                   

14:                                        
                        

15:                                                       
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16:                                               
   

                      

17:                           
           

             
   

18:               end 

19:        end 

20: end 

18:             
      

4.4 Optimal offloading strategy 

Optimal offloading strategy, Algorithm 5, is the 

method, which used to find the best offloading decision to 

minimize the total cost. All possible offloading decisions 

for the number of devices with their tasks (2NM) in the 

system are first generated by the algorithm, then the total 

cost      
     of all possible offloading decisions is 

determined. Finally, return the minimum total cost 

       
      . However, this algorithm will only operate for up 

to 7 devices with 3 tasks for each device, because it is a 

complex method, which takes a long time to generate all 

possible decisions and compute the optimal offloading, 

especially when number of users and tasks increases. 

Algorithm 5: Optimal offloading strategy 

           

              
         

        
         

                  

  2:                             
                                 

  3:                      
           

 
   
          

                               

  4:                             
            

      

  5:              end 

  6: end 

  7:               
       

4.5 Reinforcement learning 

In this section, we will show the main components of 

reinforcement learning, followed by a detailed 

demonstration of deep reinforcement learning method for 

generating the offloading decision. where the 

reinforcement learning is a category of the machine 

learning.as shown in Fig. 2, the important components of 

reinforcement learning are state, action, reward, 

environment, policy, and agent. where the agent takes the 

state from the environment. the action       is selected 

from action space A, where the probability to choose 

action      depend on the policy          |     . the 

selected action    is required to move from state       to 

next state       . the objective of the reinforcement 

learning is increasing the cumulative rewards which 

calculated by:   ∑       
 
    , where   is discount factor 

[36][37]. The discount factor is number between (0,1).  

The solving of the optimization problems is by The Q 

learning algorithm and Deep DQN algorithm. The main 

parameters are state, action, reward, and policy [30]. 

 State: the state Z(t) is the offloading decision Z= 

{z_1,1,z_1,2,…,z_(N,M)}, where State space Z is 1 X 

NM vector is defined as: 

     {                         }                              

 Action :the action space A is 1 X NM vector, where the 

selecting action is required to move from state to next 

state, where a_tis the index selection from state length. 

The index selection l = 1, 2, 3, …, NM and the action is 

defined as: 

                                                                        

  

Reward: the reward value               depend on the 

objective function, where the objective function of the 

optimization problem is minimizing the time and 

energy consumption to execute the tasks of all 

wireless devices. In our problem, the objective 

function is derived from the state   (t) and eq. (15), 

where denoted by eq. (19): 

           
         ∑ ∑ (      )        

     
   

 
     

                                           
                                        

 

The reward value of state s(t) and action a(t) is 

calculated by the eq. (20): 

 

                     

 {
                                       

                                     
            

 

 Policy: the policy used to select the action in this work 

is ε greedy policy, ε       . At the beginning of 

learning we don't know the optimal action   for that the 

action is randomly chosen for ε probability to explore 

the environment this is called exploration. When the 

probability is    , The action                    
to choose the optimal action this is called exploitation. 

 

 
Fig.  2. Reinforcement Learning architecture 

 

There are different models of reinforcement learning. In 

this study Q learning model are used. DQN model of deep 

reinforcement learning are used also to achieve the 

objective function. Q learning and DQN will be explained 

below. 
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4.5.1 Q learning 

Q learning algorithm is a free model of reinforcement 

learning. This algorithm can solve our problem by using Q 

table [29][38] where the states   are represented in rows of 

the table and the actions A is represented in the columns. 

first, initialize   value in the table. At each step, the action 

is chosen by using ε greedy policy. The action is performed 

to move from state to next state and to calculate the reward 

according to eq. (19), then the Q value is update according 

to eq (20).    

                       [      

                    ]               

 Where the       is the old value of        , 

              is maximum expected future reward value 

of Q in the next state respectively,        is the reward, 

the left        is the update of       , value   is the 

learning rate, and   is the discount factor. where   

      and        . 

 

 

4.5.2 Deep Q Network 

DQN is a branch of Deep Reinforcement Learning 

algorithm, where DQN used the DNN is used to generate 

and save   values.as shown in Fig. 3, DQN [39][40] is 

consist of two DNNs, where the first DNN is the 

evaluation network and the second DNN is the target 

network as shown in fig. The parameter values of 

evaluation network and target network are      ́ 

respectively. The evaluation network and the target 

network generate the outputs           and           

respectively. The inputs of evaluation network and the 

target network are the state      and the next state 

       respectively.  In the beginning choose initial 

state. The action is selected by using ε greedy to move to 

next state and calculate the reward according to equation 

(18). Save state, next state, action, reward, and done in 

replay memory B. Take a sample random mini batch from 

memory B then Calculate       

         

{
 
 

 
                                                                            

                                       

          ́     (        ́  ́)    

                                                 

       

Use a gradient descent algorithm to optimize the parameter 

values   of DNN to minimize the loss, where the loss 

function is calculated by: 

                                                         

Finally, after C steps, update   ́   . The DQN algorithm 

is showed in Algorithm 7 in details. 

Algorithm 7: Deep Q Network [30] 

Input: State       is offloading decision  

Output: Optimal offloading decision 

1: Generate target and evaluation Q network  

                                             with a random parameter θ , θ´  

  2: Generate the empty replay memory with size m 

  3:                        

  4:     Choose initial state 

  5:                              

  6:           With probability ε   select a random action       

  7:           otherwise select 

                                 

  8:              Execute      and calculate              

according to eq. (19) 

  9:              calculate       according to eq. (20)  

10:              if         is terminal state 

11:                  done is true 

Algorithm 6: Q learning [29] 

            ,    

              
       

  1:                       

  1:                   

  2:                        

  3:       Choose initial      

  4:       With probability ε   select a random action       

  5:       otherwise select                 

  6:                              

  7:              Execute      and calculate              

                                       according to eq. (19) 

  8:              Calculate       according to eq. (20) 

  9:              if         is terminal state 

10:                  break 

11:              end  

12:                                         [     

                                                              ] 

13:                          

14:      end 

15: end 

16:        
                                        

17: return        
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12:              end  

13:             Save transition (       ,      ,      ,  

        ,done) in memory  

18:          Sample random minibatch of transitions from memory 

14:              Calculate      according to eq. (22). 

15:              Calculate loss according to eq. (23).  

16:              Make    ́     after each C steps 

17:                          

18:              if done is true 

19:                 break 

20:              end 

21:      end 

22: end 

4.6 Distributed Deep Neural Network strategy 

A distributed deep neural network (DNN)-based task 

offloading algorithm, Algorithm 8, [26][41]-[43] is 

performed to solve the problem of eq. (16), where it 

consists of multiple deep neural network (DNN) as shown 

in Fig. 4.   DNNs have the same neural network as number 

of layers, nodes, and activation function, where   is number 

of DNNs. In addition, the memory experience is shared 

between all DNNs. At each episode t,   DNNs take each 

input state    to produce different binary offloading      

according to      
        

 
, where      

is a parametrized 

function,      is the parameter of     DNN,      = {1, 2, 

…,  } is the index of DNN. Then the offloading decision 

with the lowest cost is selected as the output according to 

eq. (24) then save it in the memory experience to use it in 

the training of distributed DDN algorithm. 

   
  
 
 
  

       

             
  

                                                   

 

 

Fig.  3. DQN with the environment MEC [30]

 

Algorithm 8: Distributed DNN-Based Task Offloading [26] 

 Input: different data size     

Output: The best offloading decision   
 
 
  

1:  Assign random parameters      to all DNNs              

2:  Generate an empty memory of size p 

 3:                        

 4:           Enter the same     to each DDNs 

5:           Create the output offloading decision from all DNNs 

                                
       

6:           Select the offloading decision according to eq. (24) 

 7:           Save (  ,   
 ) in the memory   

 8:           Select a random mini batch from the memory  

 9:           train DNN and update      

10:   end  

 

 

Fig.  4. Distributed DNN-based task offloading architecture 
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Neural Network 

The neural networks are used in deep Q network 

and a distributed deep learning-based task offloading have 

the same number of inputs and outputs, and layers, and the 

same activation function, where the neural networks is 

consisting of four fully connected linear layers: Input and 

output layer have    nodes, two hidden layers where the 

first hidden layer has 120 nodes, and the second hidden layer 

has 80 nodes. The activation function of the hidden layers 

and the output layer are Relu and Sigmoid, respectively [28]-

[30], and Adam algorithm is the optimizer. But they have 

different loss function, where the loss function in DQN is a 

mean square error [30] and a cross entropy loss function in 

Distributed DNN [41][42]. 

Table 3 :Simulation Parameters 

MEC Parameters [30] 
Number of wireless devices N 4 

Number of tasks M 3 

Bandwidth B 20 MHz 

Transmitted power     100 mw 

Background noise    - 100 dBm 

Size of data      (0, 10) MB 

Number of CPU cycles per bit    1000 Cycles/bit 

CPU frequency of each device   
  0.6 GHz 

Energy consumption per CPU cycle      
(0, 20 x 1011) 

J/Cycle 

CPU frequency of edge server    100 GHz 

Q learning Parameters 

Number of episodes 4000 

Number of steps 8 

Learning rate   0.01 

Discount factor   0.99 

DQN Parameters 

Number of episodes 10000 

Memory size  1024 

Batch size 32 

Learning rate   0.1 

Discount factor   0.99 

Greedy value ε 1 

Minimum greedy value 0.1 

Decay greedy per episode 0.995 

Number of steps to update target network   100000 

Distributed DNN Parameters 

Memory size  512 

Batch size 128 

Number of DNN 5 

Learning rate   0.0001 

5. RESULTS 

In this section, we study the result of each strategy 

which explained in section 4 to produce the offloading 

decision. Our results were simulated at Google 

Colaboratory with Intel(R) Xeon(R) CPU @ 2.30GHz 

Processor and 12.0 GB available RAM. Python is the 

simulator of our work, where PyTorch library are used to 

establish the neural network. The parameters of the 

simulation in Tables 3. 

5.1 Total cost with different number of users 

In this section, we compare between different strategies 

to minimize the total cost. First, we calculate the total cost 

with different number of users. From Fig. 5, it is noted that 

the full offloading strategy is better than full local, the 

optimal offloading is complex when number of users 

increase, where the number of iterations to find the optimal 

offloading decision equal 2NM, when number of devices is 

7 and number of tasks 3 the iteration is 221=2097152. The 

Deep learning became more able to deal with more 

complex problem. As shown in figure, Q learning, DQN, 

and a distributed DNN algorithms achieve the optimal 

offloading. However, Q learning, when number of devices 

increase the Q table size increases, so it can't update the Q 

table. the DQN and distributed DNN algorithms solved the 

problem of increasing number of users. The results of 

simulation (4 devices with 3 tasks for each device) show 

that the total cost in terms of time and energy consumption 

in Q learning, DQN and, Distributed 

 

 
Fig.  5:Total cost when using different number of devices. 

DNN algorithms is equal to the optimal offloading 

strategy, furthermore they reduce the total cost up to 63.7% 

when compared to full local strategy, also up to 21.8% 

when compared to full edge strategy. However, the DQN 

algorithm would need to train for a longer time than a 

distributed DNN when number of user increases.  

In this subsection, we explain the parameters which 

effect on the convergence performance of a distributed 

DNN and DQN algorithms. There are different values of 

each parameter which are applied then we select the best 

value for our simulation 

5.1.1 Distributed DNN Parameters 

In this subsection, the effects of various parameters on 

the total cost will be discussed, which are number of DNN, 

Memory size, Batch size, Learning rate. The effect of 

increasing the number of DNNs on convergence 

performance is shown in Fig.6 (a) It is observed that the 

distributed DNN algorithm's convergence performance 

improves as the number of DNNs increases. Furthermore, 

when we use a single DDN, it can't learn anything from the 

data that comes out from itself. So, the number of DDNs is 

at least 2 DNNs. 

      In Fig.6(b), the total cost is plotted when memory 

size of a distributed DNN differs from 512 to 2048. The 

figure shows that the smaller memory size can achieve 

faster convergence. So, the memory size is set as 512, 
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where it is the proper value for the better convergence 

performance in a distributed DNN simulation.  

      In Fig.6 (c), the simulation results are shown with 

batch size varying from 32 to 128, where batch size is the 

number of samples which taken randomly from the memory 

size. The figure show that when the batch size is small, the 

converges is fastest, but with the low performance. It 

because small batch can only store small experience. In 

addition, it is true that the training takes longer time with a 

larger batch. Thus, from numerical results are showed in 

figure, we select batch size as 128 in distributed DNN 

simulation. 

      The effect of different learning rate ranging from 0.1 

to 0.0001 on the convergence of distributed DNN algorithm 

is shown in Fig.6 (d) The convergence speed is faster when 

the learning rate increases. However, when learning rate 

increases to 0.1 or .01, the converge is faster but the local 

optimum occurs and lower performance. So, the learning 

rate is set to the proper value according to the situations. In 

a distributed DNN simulation, the proper value of learning 

rate is 0.0001.  

 
Fig.6 (a) Impacts of different numbers of DNNs 

 

Fig.6 (b) Impacts of different Memory Size 

 

Fig.6 (c) Impacts of different Batch Size 

 

Fig.6 (d) Impacts of different Learning Rate 

5.2 Deep Q Network Parameters 

We also adjusted the parameters of Deep Q Network 

algorithm, which effect on the cumulative reward. Fig.7 (a) 

shows the impact of learning rates varying from 0.1 to 

0.001 on the cumulative reward. From the figure, we can 

observe cumulative reward remained stable around 6 at the 

end. Furthermore, we discover that when learning rate is 

0.01, the curve converges about 6000 learning steps. In 

addition, when learning rate is 0.001, the convergence 

process will reach a local optimal solution. So, learning rate 

is set to 0.1.  

      The impacts of various memory size ranging from 

512 to 2048 on convergence performance are shown in 

Fig.7 (b). from the figure, when memory size is 512, the 

convergence performance results in a local optimal 

solution. Hence, the memory size set to 1024. 

 

 
Fig.7 (a) Impacts of different Learning Rate 

 

 
Fig.7 (b) Impacts of different Memory Size 
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Fig.7 (c) Impacts of different Batch Size 

Fig.7 (c) depicts how batch size effects on the 

cumulative reward and convergence performance. 

Although, the convergence happens more quickly as the 

batch size increases, it can be seen from the figure that the 

performance is higher when the batch size is 128 compared 

to 32 or 64. So, the batch size is set to 128 in DQN 

simulation. 

In Fig. 8, it shows that total cost by using Distributed 

DNN and Deep Q Network algorithm. From figure, it is 

shown that after 6000 episodes became DQN and a 

distributed DNN have the same value of the total cost equal 

after 6000 learning steps. However, a distributed DNN 

generates the offloading decision for 4 devices with 3 tasks 

for each device (in 4 milliseconds) faster than DQN 

algorithm (in 8 milliseconds). 

 

Fig.8 The convergence performance of Distributed DNN and DQN 

algorithm 

6. CONCLUSION AND FUTURE WORK 

This paper proposed a resource allocation and task 

offloading model for multiple-device, multiple-task MEC 

system. Furthermore, the model is formulated as a problem 

with the objective of decreasing the total cost in terms of 

time of computation and energy consumption. The 

proposed problem is solved by applying the six strategies, 

which they are compared with the optimal offloading 

strategy. Although, optimal strategy is an important 

guideline for the six strategies used, the optimal strategy 

does not scale as the number of devices increases. The 

simulation results show that DQN and a distributed DNN 

algorithms can outperform full offloading and full local 

strategies by up to 21.8%, and 63.7% of the total cost. 

Furthermore, the distributed DNN generates the optimal 

offloading decision faster than DQN in 4 milliseconds, but 

DQN in 8 milliseconds. So, it thinks that the distributed 

DNN algorithm can be further enhanced to improve real 

time offloading of MEC system. 

In the future, we will investigate the task offloading 

problem in the MEC system with multiple edge servers, 

multiple devices, and multiple tasks. In addition, the study 

will focus on the mobility of the wireless devices, which 

enables the devices to move between the different Base 

Stations while the task is being offloading. 
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